Removal of pollutants from aqueous product of Co-hydrothermal liquefaction: Adsorption and isotherm studies.

Chemosphere

Department of Civil and Environmental Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, NJ, 08028, USA.

Published: April 2023

Hydrothermal liquefaction (HTL) is an attractive technology for the conversion of wet waste into biofuel and co-HTL has been touted to increase the quality of products. However, the recovery of energy from wastewater byproduct called aqueous co-product (ACP) is limited due to the presence of toxic inhibitory substances. Adsorption has been countenanced to remove these toxic compounds but there has not been a distinct comprehensive adsorption isotherm study to explain the interaction between the adsorbate molecules and the adsorbent sites. This study investigated the sorption mechanism of oxidizable reducing pollutants measured as chemical oxygen demand (COD); heavy metals (boron and copper); and phenols from ACP samples obtained from co-HTL of brewery trub (BT), and primary sludge (PS) onto granular and powdered activated carbon (GAC and PAC). Conventional isotherm models such as Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich were used for data analysis. Results indicated that the adsorptive capacity (qe) of PAC was greater than GAC in COD adsorption (BT-1947 > 234; BTPS-617 > 245; PS-289 > 207), boron adsorption (BTPS-70 > 7; PS-53 > 49), copper adsorption (BT-5 > 1; BTPS-3 > 2; PS-1.3 > 1.1) and phenol adsorption (BT-1340 > 356; BTPS-1587 > 253; PS-460 > 245) in mg/g, μg/g, μg/g, and μg/g respectively. Comparing the adsorption of pollutants onto PAC and GAC, this study observed that PAC followed the Temkin, and Dubinin-Radushkevich models in the adsorption of the four pollutants while GAC followed the Freundlich and Langmuir models in the adsorption of phenol and copper, and Temkin, and Dubinin-Radushkevich in the adsorption of COD and boron. This study proved that combining feedstock in HTL (co-HTL) does not only change the quality of the ACP but also changes the dynamics of the adsorption isotherms. The Free Energy Change (ΔG) result showed a spontaneous reaction in the adsorption of copper and phenol. This study presents an adsorption equilibrium information for the interpretation of adsorption isotherms for the overall improvement of adsorption mechanism pathways and the effective design of adsorption systems for the treatment of ACP.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2023.138165DOI Listing

Publication Analysis

Top Keywords

adsorption
17
temkin dubinin-radushkevich
12
adsorption isotherm
8
μg/g μg/g
8
adsorption pollutants
8
models adsorption
8
adsorption isotherms
8
study
5
removal pollutants
4
pollutants aqueous
4

Similar Publications

Mesoporous silica exhibits a diverse range of applications owing to its pore structure and inter-pore correlation. Consequently, quantitative characterization of its mesoscopic structure is extremely crucial to reciprocate its potential applications. In this work, we utilized the chemical and aerosol routes to successfully synthesize granular, porous silica with an average pore size in the range of ∼5-10 nm and different degrees of structural correlation among its pores.

View Article and Find Full Text PDF

Plant extracts and bacterial biofilm are acknowledged to offer impressive corrosion-inhibitory activities. However, anticorrosive properties of their combination are still less reported. Thus, in the present study, we aimed to evaluate the corrosion inhibition efficiency of Saccharum officinarum bagasse (SOB) plant extract, Pseudomonas chlororaphis (P.

View Article and Find Full Text PDF

In the present research, an attempt has been made to develop a new thin film microextraction method for the extraction of several polycyclic aromatic hydrocarbons from aqueous samples collected from different industrial units prior to their analysis by gas chromatography combined with a flame ionization detector. In this approach, a thin iron mesh was modified by the formation of iron(II) oxinate on its surface and used for the extraction of analytes without an additional sorbent. For this purpose, first, the mesh was immersed in a sulfuric acid solution and then transferred into an 8-hydroxy quinoline (oxine) solution dissolved in ammonia solution.

View Article and Find Full Text PDF

This work introduces the Adsorption Energy Distribution (AED) calculation using competitive adsorption isotherm data, enabling investigation of the simultaneous AED of two components for the first time. The AED provides crucial insights by visualizing competitive adsorption processes, offering an alternative adsorption isotherm model without prior assuming adsorption heterogeneity, and assisting in model selection for more accurate retention mechanistic modeling. The competitive AED enhances our understanding of multicomponent interactions on stationary phases, which is crucial for understanding how analytes compete on the stationary phase surface and for selecting adsorption models for numerical optimization of preparative chromatography.

View Article and Find Full Text PDF

Formation of Highly Negatively Charged Supported Lipid Bilayers on a Silica Surface: Effects of Ionic Strength and Osmotic Stress.

Langmuir

January 2025

Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Institute of New Concept Sensors and Molecular Materials, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.

Solid supported lipid bilayers (SLBs) serve as an excellent platform for biophysical studies. However, the formation of highly negatively charged SLBs on negatively charged surfaces remains a challenge due to electrostatic repulsion. Here, we study the effects of ionic strength and osmotic stress on the formation of highly negatively charged SLBs on the silica surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!