A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Degradation and fate of 2,4-dinitroanisole (DNAN) and its intermediates treated with Mg/Cu bimetal: Surface examination with XAS, DFT, and LDI-MS. | LitMetric

A novel Mg-based bimetal reagent (Mg/Cu) was used as an enhanced reductive system to degrade insensitive munition 2,4-dinitroanisole (DNAN), a contaminant found in energetic-laden waste. Degradation of DNAN was significantly impacted by dissolved oxygen and studied in anoxic and oxic bimetal systems (i.e., purging with N, air, or O gas). Degradation occurred through sequential nitroreduction: first one nitro group was reduced (ortho or para) to form short-lived intermediates 2-amino-4-nitroanisole or 4-amino-2-nitroanisole (2-ANAN or 4-ANAN), and then subsequent reduction of the other nitro group formed 2,4-diaminoanisole (DAAN). The nitro-amino intermediates demonstrated regioselective reduction in the ortho position to 2-ANAN; Regioselectivity was also impacted by the anoxic/oxic environment. Under O-purging DNAN degradation rate was slightly enhanced, but most notably O significantly accelerated DAAN generation. DAAN also further degraded only in the oxygenated Mg/Cu system. Adsorption of DNAN byproducts to the reagent occurred regardless of anoxic/oxic condition, resulting in a partition of carbon mass between the adsorbed phase (27%-35%) and dissolved phase (59%-72%). Additional surface techniques were applied to investigate contaminant interaction with Cu. Density functional theory (DFT) calculations identified preferential adsorption structures for DNAN on Cu with binding through two O atoms of one or both nitro groups. X-ray absorption spectroscopy (XAS) measurements determined the oxidation state of catalytic metal Cu and formation of a Cu-O-N bond during treatment. Laser desorption ionization mass spectrometry (LDI-MS) measurements also identified intermediate 2-ANAN adsorbed to the bimetal surface.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jes.2022.09.007DOI Listing

Publication Analysis

Top Keywords

24-dinitroanisole dnan
8
bimetal surface
8
nitro group
8
dnan
6
degradation
4
degradation fate
4
fate 24-dinitroanisole
4
dnan intermediates
4
intermediates treated
4
treated mg/cu
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!