A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Quantitative assessment of automated purification and concentration of E. coli bacteria. | LitMetric

Quantitative assessment of automated purification and concentration of E. coli bacteria.

SLAS Technol

George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA. Electronic address:

Published: August 2023

Automated methods for rapidly purifying and concentrating bacteria from environmental interferents are needed in next-generation applications for anything from water purification to biological weapons detection. Though previous work has been performed by other researchers in this area, there is still a need to create an automated system that can both purify and concentrate target pathogens in a timely manner with readily available and replaceable components that could be easily integrated with a detection mechanism. Thus, the objective of this work was to design, build, and demonstrate the effectiveness of an automated system, the Automated Dual-filter method for Applied Recovery, or aDARE. aDARE uses a custom LABVIEW program that guides the flow of bacterial samples through a pair of size-based separation membranes to capture and elute the target bacteria. Using aDARE, we eliminated 95% of the interfering beads of a 5 mL-sample volume containing 10 CFU/mL of E. coli contaminated with 2 µm and 10 µm polystyrene beads at 10 beads/mL concentration., The target bacteria were concentrated to more than twice the initial concentration in 900 µL of eluent, resulting in an enrichment ratio for the target bacteria of 42 ± 13 in 5.5 min. These results show the feasibility and effectiveness of using size-based filtration membranes to purify and concentrate a target bacterium, in this case E. coli, in an automated system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.slast.2023.02.004DOI Listing

Publication Analysis

Top Keywords

automated system
12
target bacteria
12
purify concentrate
8
concentrate target
8
automated
6
bacteria
5
target
5
quantitative assessment
4
assessment automated
4
automated purification
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!