Bacteria protect themselves from the toxicity of antimicrobial metabolites they produce through several strategies. In one resistance mechanism, bacteria assemble a non-toxic precursor on an N-acyl-d-asparagine prodrug motif in the cytoplasm, then export it to the periplasm where a dedicated d-amino peptidase hydrolyzes the prodrug motif. These prodrug-activating peptidases contain an N-terminal periplasmic S12 hydrolase domain and C-terminal transmembrane domains (TMDs) of varying lengths: type I peptidases contain three transmembrane helices, and type II peptidases have an additional C-terminal ABC half-transporter. We review studies which have addressed the role of the TMD in function, the substrate specificity, and the biological assembly of ClbP, the type I peptidase that activates colibactin. We use modeling and sequence analyses to extend those insights to other prodrug-activating peptidases and ClbP-like proteins which are not part of prodrug resistance gene clusters. These ClbP-like proteins may play roles in the biosynthesis or degradation of other natural products, including antibiotics, may adopt different TMD folds, and have different substrate specificity compared to prodrug-activating homologs. Finally, we review the data supporting the long-standing hypothesis that ClbP interacts with transporters in the cell and that this association is important for the export of other natural products. Future investigations of this hypothesis as well as of the structure and function of type II peptidases will provide a complete account of the role of prodrug-activating peptidases in the activation and secretion of bacterial toxins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10030199 | PMC |
http://dx.doi.org/10.1016/j.biochi.2022.07.019 | DOI Listing |
Biochimie
February 2023
Department of Molecular and Cellular Biology, Harvard University, 52 Oxford St, Cambridge, MA, 02138, USA. Electronic address:
Bacteria protect themselves from the toxicity of antimicrobial metabolites they produce through several strategies. In one resistance mechanism, bacteria assemble a non-toxic precursor on an N-acyl-d-asparagine prodrug motif in the cytoplasm, then export it to the periplasm where a dedicated d-amino peptidase hydrolyzes the prodrug motif. These prodrug-activating peptidases contain an N-terminal periplasmic S12 hydrolase domain and C-terminal transmembrane domains (TMDs) of varying lengths: type I peptidases contain three transmembrane helices, and type II peptidases have an additional C-terminal ABC half-transporter.
View Article and Find Full Text PDFOncotarget
February 2016
Department of Rheumatology, Amsterdam Rheumatology and Immunology Center, VU University Medical Center, Amsterdam, The Netherlands.
Aminopeptidase inhibitors are receiving attention as combination chemotherapeutic agents for the treatment of refractory acute myeloid leukemia. However, the factors determining therapeutic efficacy remain elusive. Here we identified the molecular basis of acquired resistance to CHR2863, an orally available hydrophobic aminopeptidase inhibitor prodrug with an esterase-sensitive motif, in myeloid leukemia cells.
View Article and Find Full Text PDFMed Res Rev
May 2015
Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854.
Due to the propensity of relapse and resistance with prolonged androgen deprivation therapy (ADT), there is a growing interest in developing non-hormonal therapeutic approaches as alternative treatment modalities for hormone refractory prostate cancer (HRPC). Although the standard treatment for HRPC consists of a combination of ADT with taxanes and anthracyclines, the clinical use of chemotherapeutics is limited by systemic toxicity stemming from nondiscriminatory drug exposure to normal tissues. In order to improve the tumor selectivity of chemotherapeutics, various targeted prodrug approaches have been explored.
View Article and Find Full Text PDFMol Pharm
December 2014
Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
The efficacy of chemotherapeutic drugs is often offset by severe side effects attributable to poor selectivity and toxicity to normal cells. Recently, the enzyme dipeptidyl peptidase IV (DPPIV) was considered as a potential target for the delivery of chemotherapeutic drugs. The purpose of this study was to investigate the feasibility of targeting chemotherapeutic drugs to DPPIV as a strategy to enhance their specificity.
View Article and Find Full Text PDFMol Imaging Biol
April 2014
Cancer Research UK and EPRSC Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK,
Purpose: The purpose of this study is to evaluate if the differential exchange rates with bulk water between amine and amide protons can be exploited using chemical exchange saturation transfer magnetic resonance (CEST-MR) to monitor the release of glutamate induced by carboxypeptidase G2 (CPG2), an enzyme utilized in cancer gene therapy.
Procedures: Z spectra of solutions of the CPG2 substrate, 3,5-difluorobenzoyl-L-glutamate (amide), and glutamate (amine) were acquired at 11.7 T, 37 °C, across different pH (5-8).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!