Background: The spread of the COVID-19 (SARS-CoV-2) and the surging number of cases across the United States have resulted in full hospitals and exhausted health care workers. Limited availability and questionable reliability of the data make outbreak prediction and resource planning difficult. Any estimates or forecasts are subject to high uncertainty and low accuracy to measure such components. The aim of this study is to apply, automate, and assess a Bayesian time series model for the real-time estimation and forecasting of COVID-19 cases and number of hospitalizations in Wisconsin healthcare emergency readiness coalition (HERC) regions.

Methods: This study makes use of the publicly available Wisconsin COVID-19 historical data by county. Cases and effective time-varying reproduction number [Formula: see text] by the HERC region over time are estimated using Bayesian latent variable models. Hospitalizations are estimated by the HERC region over time using a Bayesian regression model. Cases, effective Rt, and hospitalizations are forecasted over a 1-day, 3-day, and 7-day time horizon using the last 28 days of data, and the 20%, 50%, and 90% Bayesian credible intervals of the forecasts are calculated. The frequentist coverage probability is compared to the Bayesian credible level to evaluate performance.

Results: For cases and effective [Formula: see text], all three time horizons outperform the three credible levels of the forecast. For hospitalizations, all three time horizons outperform the 20% and 50% credible intervals of the forecast. On the contrary, the 1-day and 3-day periods underperform the 90% credible intervals. Questions about uncertainty quantification should be re-calculated using the frequentist coverage probability of the Bayesian credible interval based on observed data for all three metrics.

Conclusions: We present an approach to automate the real-time estimation and forecasting of cases and hospitalizations and corresponding uncertainty using publicly available data. The models were able to infer short-term trends consistent with reported values at the HERC region level. Additionally, the models were able to accurately forecast and estimate the uncertainty of the measurements. This study can help identify the most affected regions and major outbreaks in the near future. The workflow can be adapted to other geographic regions, states, and even countries where decision-making processes are supported in real-time by the proposed modeling system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9937741PMC
http://dx.doi.org/10.1186/s12889-023-15160-6DOI Listing

Publication Analysis

Top Keywords

real-time estimation
12
estimation forecasting
12
cases effective
12
herc region
12
bayesian credible
12
credible intervals
12
forecasting covid-19
8
covid-19 cases
8
cases hospitalizations
8
hospitalizations wisconsin
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!