Low back pain (LBP) is a common and important clinical problem. In addition to pain, patients are also affected by personal, social, and economic burdens. Intervertebral disc (IVD) degeneration is a common cause of LBP, further increasing the patient's morbidity and medical costs. The limitations of current treatment strategies for long-term pain relief mean that increasing attention has been paid to regenerative medicine. We carried out a narrative review to explore the roles of four types of regenerative medicine for treating LBP: marrow-derived stem cells, growth factors, platelet-rich plasma, and prolotherapy. Marrow-derived stem cells are regarded as an ideal cell source for IVD regeneration. Growth factors may stimulate the synthesis of extracellular matrix and attenuate or reverse the degenerative process in IVD, while platelet-rich plasma, which contains multiple growth factors, is thought to be a promising alternative therapy for IVD degeneration. Prolotherapy can initiate the body's inflammatory healing response to repair injured joints and connective tissues. This review summarizes the mechanisms, and studies, and clinical applications of these four types of regenerative medicine in patients with LBP.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9941606 | PMC |
http://dx.doi.org/10.1177/03000605231155777 | DOI Listing |
Ann Surg Oncol
January 2025
Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Background: Anaplastic thyroid cancer (ATC) is a highly lethal disease, often diagnosed with advanced locoregional and distant metastases, resulting in a median survival of just 3-5 months. This study determines the stratified effectiveness of baseline treatments in all combinations, enabling precise prognoses prediction and establishing benchmarks for advanced therapeutic options.
Methods: The study extracted a cohort of pathologically confirmed ATC patients from the Surveillance, Epidemiology, and End Results program.
Intern Emerg Med
January 2025
Rheumatology Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari, Piazza G. Cesare 11, 70124, Bari, Italy.
Nat Commun
January 2025
Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
Axonal fusion represents an efficient way to recover function after nerve injury. However, how axonal fusion is induced and regulated remains largely unknown. We discover that ferroptosis signaling can promote axonal fusion and functional recovery in C.
View Article and Find Full Text PDFCell Death Dis
January 2025
Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China.
J Med Genet
January 2025
Department of Public Health and Pediatric Sciences, University of Turin, Torino, Italy
Lateralised overgrowth (LO) is characterised by the asymmetric increase in the size of any part of the body exceeding 10% compared with the unaffected contralateral one. LO is a key feature in various syndromic overgrowth disorders, such as Beckwith-Wiedemann spectrum and -related overgrowth spectrum (PROS). However, it can also present as isolated (ILO).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!