Background: Hypertension imposes substantial health and economic burden worldwide. Primary aldosteronism (PA) is one of the most common causes of secondary hypertension, causing cardiovascular events at higher risk compared with essential hypertension. However, the germline genetic contribution to the susceptibility of PA has not been well elucidated.
Method: We conducted a genome-wide association analysis of PA in the Japanese population and a cross-ancestry meta-analysis combined with UK Biobank and FinnGen cohorts (816 PA cases and 425 239 controls) to identify genetic variants that contribute to PA susceptibility. We also performed a comparative analysis for the risk of 42 previously established blood pressure-associated variants between PA and hypertension with the adjustment of blood pressure.
Results: In the Japanese genome-wide association study, we identified 10 loci that presented suggestive evidence for the association with the PA risk (<1.0×10). In the meta-analysis, we identified 5 genome-wide significant loci (1p13, 7p15, 11p15, 12q24, and 13q12; <5.0×10), including 3 of the suggested loci in the Japanese genome-wide association study. The strongest association was observed at rs3790604 (1p13), an intronic variant of (odds ratio, 1.50 [95% CI, 1.33-1.69]; =5.2×10). We further identified 1 nearly genome-wide significant locus (8q24, ), which presented a significant association in the gene-based test (=7.2×10). Of interest, all of these loci were known to be associated with blood pressure in previous studies, presumably because of the prevalence of PA among individuals with hypertension. This assumption was supported by the observation that they had a significantly higher risk effect on PA than on hypertension. We also revealed that 66.7% of the previously established blood pressure-associated variants had a higher risk effect for PA than for hypertension.
Conclusions: This study demonstrates the genome-wide evidence for a genetic predisposition to PA susceptibility in the cross-ancestry cohorts and its significant contribution to the genetic background of hypertension. The strongest association with the variants reinforces the implication of the Wnt/β-catenin pathway in the PA pathogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10063185 | PMC |
http://dx.doi.org/10.1161/CIRCULATIONAHA.122.062349 | DOI Listing |
Sci Rep
December 2024
Department of Agronomy and Plant Breeding, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran.
Understanding the genetic basis of drought tolerance in safflower (Carthamus tinctorius L.) is essential for developing resilient varieties. In this study, we performed a genome-wide association study (GWAS) using DArTseq markers to identify marker-trait associations (MTAs) linked to drought tolerance across 90 globally diverse safflower genotypes.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Dr, Raleigh, NC, 27607, USA.
Hypertrophic cardiomyopathy (HCM) afflicts humans, cats, pigs, and rhesus macaques. Disease sequelae include congestive heart failure, thromboembolism, and sudden cardiac death (SCD). Sarcomeric mutations explain some human and cat cases, however, the molecular basis in rhesus macaques remains unknown.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA.
Ascochyta blight, caused by the necrotrophic fungus Ascochyta rabiei, is a major threat to chickpea production worldwide. Resistance genes with broad-spectrum protection against virulent A. rabiei strains are required to secure chickpea yield in the US Northern Great Plains.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Minimally Invasive Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, the First Affiliated Hospital of Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China.
Alternative splicing (AS) contributes to transcript and protein diversity, affecting their structure and function. However, the specific transcriptional regulatory mechanisms underlying AS in the context of hepatic ischemia reperfusion (IR) injury in mice have not been extensively characterized. In this study, we investigated differentially alternatively spliced (DAS) genes and differentially expressed transcripts (DETs) in a mouse model of hepatic IR injury using the high throughput RNA sequencing (RNA-seq) analysis and replicate multivariate analysis of transcript splicing (rMATS) analysis.
View Article and Find Full Text PDFBr J Ophthalmol
December 2024
Department of Ophthalmology and Medical Research Center, Oulu University Hospital; Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland.
Background/aims: The purpose of this study is to define genetic factors associated with anterior uveitis through genome-wide association study (GWAS).
Methods: In this GWAS meta-analysis, we combined data from the FinnGen, Estonian Biobank and UK Biobank with a total of 12 205 anterior uveitis cases and 917 145 controls. We performed a phenome-wide association study (PheWAS) to investigate associations across phenotypes and traits.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!