In 1979, Steinberg and colleagues described a unique kindred with familial hypobetalipoproteinemia (Steinberg, D., Grundy, S. M., Mok, H. Y. I., Turner, J. D., Weinstein, D. B., Brown, W. V., and Albers, J. J. (1979) J. Clin. Invest. 64, 292-301). Recently, we demonstrated the existence of an abnormal species of apolipoprotein (apo-) B, apo-B37 (Mr = 203,000) in nine members of that kindred (Young, S. G., Bertics, S. J., Curtiss, L. K., and Witztum, J. L. (1987) J. Clin. Invest. 79, 1831-1841; Young, S. G., Bertics, S. J., Curtiss, L. K., Dubois, B. W., and Witztum, J. L. (1987) J. Clin. Invest. 79, 1842-1851). Apolipoprotein B37 contains only the amino-terminal portion of apo-B100. In affected individuals most of the apo-B37 is contained in the high density lipoprotein (HDL) fraction (d = 1.063-1.21 g/ml), where it is the principal apolipoprotein in a unique lipoprotein (Lp) particle, Lp-B37, which contains little, if any, apo-A-I. However, the most abundant lipoprotein in the HDL density fraction is a smaller particle, which contains apo-A-I, but no apo-B. The Lp-B37 particles were isolated from the HDL of affected individuals by immunoabsorption of apo-B37. Selected affinity antibodies specific for apo-B37 were used to prepare an anti-apo-B37-Sepharose 4B column. Lipoproteins not bound by the column (unbound HDL fraction) contained apo-A-I, but no apo-B. The Lp-B37, which was eluted from the column with 3 M KI, contained apo-B37 and trace amounts of apo-A-I, but no apo-B100. Over a 4-h period, normal human fibroblasts degraded 10-fold more 125I-low density lipoprotein (LDL) than 125I-Lp-B37. Also, whereas addition of excess unlabeled LDL markedly reduced degradation of 125I-LDL, it did not significantly reduce the degradation of 125I-Lp-B37. Unlabeled Lp-B37 did not inhibit uptake and degradation of 125I-LDL by fibroblasts. These data suggest that the amino-terminal portion of apo-B100, when expressed on a naturally occurring lipoprotein particle, does not contain a functional apo-B,E(LDL) receptor binding domain.
Download full-text PDF |
Source |
---|
Vaccines (Basel)
June 2024
Unidad de Biotecnología y Protozoarios, Instituto de Patología Experimental "Dr. Miguel Ángel Basombrío", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta, Salta A4400, Argentina.
Sci Rep
May 2023
Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078, Pozzuoli, NA, Italy.
F508del, the most frequent mutation in cystic fibrosis (CF), impairs the stability and folding of the CFTR chloride channel, thus resulting in intracellular retention and CFTR degradation. The F508del defect can be targeted with pharmacological correctors, such as VX-809 and VX-445, that stabilize CFTR and improve its trafficking to plasma membrane. Using a functional test to evaluate a panel of chemical compounds, we have identified tricyclic pyrrolo-quinolines as novel F508del correctors with high efficacy on primary airway epithelial cells from CF patients.
View Article and Find Full Text PDFPLoS One
May 2023
Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America.
The association between Sneathia vaginalis and preterm birth is emerging. The Gram-negative anaerobe produces a large exotoxin, the cytopathogenic toxin A (CptA), that forms pores in human epithelial cells and red blood cells. The structure of the toxin has not been determined, but in silico analysis predicts that a large amino-terminal region of the protein is globular and separated from the carboxy-terminal tandem repeats by a disordered region.
View Article and Find Full Text PDFCell Calcium
June 2023
Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City 04510, México. Electronic address:
STIM1 and Orai1 are the central core of the Store Operated Calcium Entry (SOCE). This calcium influx mechanism is triggered after the activation of Gq protein-coupled receptors at the plasma membrane (PM) that activate phospholipase C. The phospholipase C produces Inositol triphosphate (IP3) which rapidly diffuses throughout the cytosol, resulting in the binding and activation of IP3 receptors (IP3R) and the rapid efflux of calcium from the endoplasmic reticulum (ER) to the cytosol.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!