Background: Sepsis-associated encephalopathy (SAE) is characterized by a diffuse cerebral dysfunction that accompanies sepsis in the absence of direct central nervous system infection. The endothelial glycocalyx is a dynamic mesh containing heparan sulfate linked to proteoglycans and glycoproteins, including selectins and vascular/intercellular adhesion molecules (V/I-CAMs), which protects the endothelium while mediating mechano-signal transduction between the blood and vascular wall. During severe inflammatory states, components of the glycocalyx are shed into the circulation and can be detected in soluble forms. Currently, SAE remains a diagnosis of exclusion and limited information is available on the utility of glycocalyx-associated molecules as biomarkers for SAE. We set out to synthesize all available evidence on the association between circulating molecules released from the endothelial glycocalyx surface during sepsis and sepsis-associated encephalopathy.

Methods: MEDLINE (PubMed) and EMBASE were searched since inception until May 2, 2022 to identify eligible studies. Any comparative observational study: i) evaluating the association between sepsis and cognitive decline and ii) providing information on level of circulating glycocalyx-associated molecules was eligible for inclusion.

Results: Four case-control studies with 160 patients met the inclusion criteria. Meta-analysis of biomarkers ICAM-1 (SMD 0.41; 95% CI 0.05-0.76; p = 0.03; I2 = 50%) and VCAM-1 (SMD 0.55; 95% CI 0.12-0.98; p = 0.01; I2 = 82%) revealed higher pooled mean concentration in patients with SAE compared to the patients with sepsis alone. Single studies reported elevated levels of P-selectin (MD 0.80; 95% CI -17.77-19.37), E-selectin (MD 96.40; 95% Cl 37.90-154.90), heparan sulfate NS2S (MD 19.41; 95% CI 13.37-25.46), and heparan sulfate NS+NS2S+NS6S (MD 67.00; 95% CI 31.00-103.00) in patients with SAE compared to the patients with sepsis alone.

Conclusion: Plasma glycocalyx-associated molecules are elevated in SAE and may be useful for early identification of cognitive decline in sepsis patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9942976PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0281941PLOS

Publication Analysis

Top Keywords

glycocalyx-associated molecules
16
heparan sulfate
12
sepsis-associated encephalopathy
8
endothelial glycocalyx
8
cognitive decline
8
patients sae
8
sae compared
8
compared patients
8
patients sepsis
8
molecules
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!