Acute high-intensity interval exercise is known to expand plasma volume 24 h after exercise. Upright exercise posture plays a role in expanding plasma volume by influencing lymphatic outflow and redistributing albumin while supine exercise does not. We examined if further upright and weight-bearing exercises could further promote plasma volume expansion. We also tested the volume of intervals needed to induce plasma volume expansion. To test the first hypothesis, 10 subjects performed intermittent high-intensity exercise (4 min at 85% V̇ , 5 min at 40% V̇ repeated 8 times) on separate days on the treadmill and cycle ergometer. For the second study, 10 subjects performed four, six, and eight intervals of the same interval protocol on separate days. Changes in plasma volume were calculated from changes in hematocrit and hemoglobin. Transthoracic impedance (Z ) and plasma albumin were assessed while seated before and postexercise. Plasma volume increased 7.3% ± 4.4% and 6.3% ± 3.5% following treadmill and cycle ergometer exercise, respectively. For four, six, and eight intervals, plasma volume increased by 6.6% ± 4.0%, 4.7% ± 2.6%, and 4.2% ± 5.6%, respectively. The increases in plasma volume were similar for both exercise modes and all three exercise volumes. There were no differences in Z or plasma albumin content between trials. In conclusion, rapid plasma volume expansion following eight bouts of high-intensity intervals appears to be independent of upright exercise posture (treadmill versus cycle ergometer). Meanwhile, plasma volume expansion was similar after four, six, and eight intervals of cycle ergometry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9937781PMC
http://dx.doi.org/10.14814/phy2.15601DOI Listing

Publication Analysis

Top Keywords

plasma volume
44
volume expansion
20
volume
13
plasma
13
cycle ergometer
12
exercise
9
upright exercise
8
exercise posture
8
subjects performed
8
separate days
8

Similar Publications

Characterization of a novel PET radioligand for mitochondrial complex I in nonhuman primate.

Nucl Med Biol

January 2025

Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, United States. Electronic address:

The role of mitochondrial complex I (MC-I) dysfunction is well-documented across a range of neurodegenerative disorders. Recently, a novel positron emission tomography (PET) radioligand, [F]CNL02, has been synthesized to target MC-I. In this paper, we provide a comprehensive characterization of [F]CNL02, using nonhuman primate as a model system.

View Article and Find Full Text PDF

Background And Objectives: Despite the absence of acute lesion activity in multiple sclerosis (MS), chronic neurodegeneration continues to progress, and a potential underlying mechanism could be the kynurenine pathway (KP). Prolonged activation of the KP from chronic inflammation is known to exacerbate the progression of neurodegenerative diseases through the production of neurotoxic metabolites. Among the 8 KP metabolites, six of them, namely kynurenine (KYN), 3-hydroxylkynurenine (3HK), anthranilic acid (AA), kynurenic acid (KYNA), and quinolinic acid (QUIN), have been associated with neurodegeneration.

View Article and Find Full Text PDF

This research explored the effect of high-fiber diet based on gut microbiota on chronic heart failure (HF) patients. Chronic HF patients, who had undergone a dietary survey indicating a daily dietary fiber intake of less than 15g/d were divided into the control and study groups (n = 50). In addition to conventional heart failure treatment, the study group received dietary guidance, while the control group did not receive any dietary guidance and maintained their usual low-fiber dietary habits.

View Article and Find Full Text PDF

In recent years, despite significant advances in preconcentration and preparation techniques that have led to efficient recovery and accurate measurement of target compounds. There is still a need to develop adsorbents with unique and efficient features such as high pore volume and surface area, reactivity, easy synthesis, low toxicity, and compatibility with the environment, which increase the adsorption capacity and increase extraction efficiency. Semiconductor nanocrystals called quantum dots (QDs) with a size of less than 10 nm are three-dimensional nanoparticles with a spherical, rod, or disc structure that have significant potential in extraction as adsorbents due to their excellent properties such as low toxicity, reactivity, environmental friendliness, and hydrophilic and hydrophobic interactions.

View Article and Find Full Text PDF

Introduction: Platelet transfusion has been therapeutically used in patients with thrombocytopenia and platelet function defects over the years. The use of advanced techniques may add value in assessing the quality of platelet products. The aim of the study was to assess stored platelet concentrates (PCs) prepared in blood banks for platelet indices, clot strength, and platelet function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!