Epidemiological studies suggest that fetal growth restriction (FGR) caused by gestational cholestasis is associated with elevated serum cholic acid (CA). Here, we explore the mechanism by which CA induces FGR. Pregnant mice except controls were orally administered with CA daily from gestational day 13 (GD13) to GD17. Results found that CA exposure decreased fetal weight and crown-rump length, and increased the incidence of FGR in a dose-dependent manner. Furthermore, CA caused placental glucocorticoid (GC) barrier dysfunction via down-regulating the protein but not the mRNA level of placental 11β-Hydroxysteroid dehydrogenase-2 (11β-HSD2). Additionally, CA activated placental GCN2/eIF2α pathway. GCN2iB, an inhibitor of GCN2, significantly inhibited CA-induced down-regulation of 11β-HSD2 protein. We further found that CA caused excessive reactive oxygen species (ROS) production and oxidative stress in mouse placentas and human trophoblasts. NAC significantly rescued CA-induced placental barrier dysfunction by inhibiting activation of GCN2/eIF2α pathway and subsequent down-regulation of 11β-HSD2 protein in placental trophoblasts. Importantly, NAC rescued CA-induced FGR in mice. Overall, our results suggest that CA exposure during late pregnancy induces placental GC barrier dysfunction and subsequent FGR may be via ROS-mediated placental GCN2/eIF2α activation. This study provides valuable insight for understanding the mechanism of cholestasis-induced placental dysfunction and subsequent FGR.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1096/fj.202202126R | DOI Listing |
Sci Total Environ
January 2024
Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China; Department of Toxicology, Anhui Medical University, Hefei 230032, China. Electronic address:
Intrauterine growth retardation (IUGR) is a major cause of perinatal morbidity and mortality. Previous studies showed that 1-nitropyrene (1-NP), an atmospheric pollutant, induces placental dysfunction and IUGR, but the exact mechanisms remain uncertain. In this research, we aimed to explore the role of mitophagy on 1-NP-evoked placental progesterone (P4) synthesis inhibition and IUGR in a mouse model.
View Article and Find Full Text PDFFASEB J
March 2023
School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
Epidemiological studies suggest that fetal growth restriction (FGR) caused by gestational cholestasis is associated with elevated serum cholic acid (CA). Here, we explore the mechanism by which CA induces FGR. Pregnant mice except controls were orally administered with CA daily from gestational day 13 (GD13) to GD17.
View Article and Find Full Text PDFChemosphere
November 2022
Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, China. Electronic address:
Early-life exposure to environmental cadmium (Cd) is known to cause developmental disorders, yet the effect and mechanism of gestational exposure to Cd on the offspring's cognitive function remains unclear. Placenta as a well-established target organ for Cd-impaired fetal development, its role in estrogen regulation and offspring cognitive function is unknown. Our in vivo experiments found that gestational Cd exposure impaired cognitive function in adult male offspring, accompanied with lowered 17β-estradiol (E2) level in the male fetal brain upon Cd exposure.
View Article and Find Full Text PDFRedox Biol
April 2021
Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China. Electronic address:
Gestational exposure to environmental stress induces fetal growth restriction (FGR), and thereby increasing the risk of infant death and chronic noncommunicable diseases in adults. However, the mechanism by which environmental stress induces FGR remains unclear. Based on case-control study, we found that the reduced level of melatonin (MT), a major secretory product from the pineal gland, was observed in placentae of FGR.
View Article and Find Full Text PDFJ Hazard Mater
January 2021
Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China. Electronic address:
Cadmium (Cd), a well-known environmental pollutant, can lead to placental insufficiency and fetal growth restriction. However, the underlying mechanism is unknown. The purpose of our study is to explore the effect of Cd on placental angiogenesis and its mechanism using in vitro and in vivo models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!