Additive manufacturing is widely used in the orthopaedic industry for the high freedom and flexibility in the design and production of personalized custom implants made of Ti6Al4V. Within this context, finite element modeling of 3D printed prostheses is a robust tool both to guide the design phase and to support clinical evaluations, possibly virtually describing the in-vivo behavior of the implant. Given realistic scenarios, a suitable description of the overall implant's mechanical behavior is unavoidable. Considering typical custom prostheses' designs (i.e. acetabular and hemipelvis implants), complex designs involving solid and/or trabeculated parts, and material distribution at different scales hinder a high-fidelity modeling of the prostheses. Moreover, uncertainties in the production and in the material characterization of small parts approaching the accuracy limit of the additive manufacturing technology still exist. While recent works suggest that the mechanical properties of thin 3D-printed parts may be peculiarly affected by specific processing parameters (i.e. powder grain size, printing orientation, samples' thickness) as compared to conventional Ti6Al4V alloy, the current numerical models make gross simplifications in describing the complex material behavior of each part at different scales. The present study focuses on two patient-specific acetabular and hemipelvis prostheses, with the aim of experimentally characterizing and numerically describing the dependency of the mechanical behavior of 3D printed parts on their peculiar scale, therefore, overcoming one major limitation of current numerical models. Coupling experimental activities with finite element analyses, the authors initially characterized 3D printed Ti6Al4V dog-bone samples at different scales, representative of the main material components of the investigated prostheses. Afterwards, the authors implemented the characterized material behaviors into finite element models to compare the implications of adopting scale-dependent vs. conventional scaleindependent approaches in predicting the experimental mechanical behavior of the prostheses in terms of their overall stiffness and the local strain distribution. The material characterization results highlighted the need for a scale-dependent reduction of the elastic modulus for thin samples compared to the conventional Ti6Al4V, which is fundamental to properly describe the overall stiffness and local strain distribution on the prostheses. The presented works demonstrate how an appropriate material characterization and a scale-dependent material description is needed to develop reliable FE models of 3D printed implants characterized by a complex material distribution at different scales.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmbbm.2023.105707 | DOI Listing |
Inorg Chem
January 2025
Department of Material and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden.
Zinc oxide (ZnO) is a semiconductor with a wide range of applications, and often the properties are modified by metal-ion doping. The distribution of dopant atoms within the ZnO crystal strongly affects the optical and magnetic properties, making it crucial to comprehend the structure down to the atomic level. Our study reveals the dopant structure and its contents in Eu-doped ZnO nanosponges with up to 20% Eu-O clusters.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
School of Electrical and Electronic Engineering, The University of Manchester, Manchester M13 9PL, United Kingdom.
Carbon fiber reinforced polymers (CFRPs) are widely used in fields such as aviation and aerospace. However, subtle defects can significantly impact the material's service life, making defect detection a critical priority. In this paper, delamination defects in CFRP are detected using line laser infrared thermography, and a defect characterization algorithm that combines differential thermography with a frequency-domain filter is proposed.
View Article and Find Full Text PDFNanoscale Horiz
January 2025
Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China.
Coordinating the droplet capture, transport, and shedding processes during fog collection to achieve efficient fog collection is a major challenge. In this study, a copper mesh with different wettability was prepared by chemical etching and thiol modification. The Cu(OH) needle structure on the surface of the samples was characterized by FE-SEM and EDS tests, and the surface of the samples was chemically analyzed by infrared and XPS analyses.
View Article and Find Full Text PDFRadiol Cardiothorac Imaging
February 2025
From the Department of Magnetic Resonance Imaging, Radiology Imaging Center, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road No. 167, Xicheng District, Beijing 100037, China (Z.D., Y.T., G.Y., X.M., S.Y., J.W., X.X., K.Y., M.L., X.C., S.Z.); Clinical and Technical Support, Philips Healthcare, Beijing, China (P.S.); and Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, SZ University Town, Shenzhen, China (K.Z., Y.Z.).
Purpose To explore the diffusion characteristics of hypertrophic cardiomyopathy (HCM) using in vivo cardiac diffusion-tensor imaging (cDTI) and to determine whether cDTI could help identify abnormal myocardium beyond cardiac MRI findings of fibrosis and hypertrophy. Materials and Methods In this prospective study conducted from April to August 2023, participants with HCM and healthy volunteers were enrolled for cardiac MRI evaluation, including cine, late gadolinium enhancement (LGE), T1 mapping, and cDT imaging, using a 3.0-T scanner.
View Article and Find Full Text PDFAnn Med
December 2025
College of Health Solutions, Arizona State University, Phoenix, Arizona, USA.
Introduction: : There is a need to assess the delivery of interventions to improve substance use disorder (SUD) treatment, as measured by the Healthcare Effectiveness Data and Information Set (HEDIS®) metrics. The goal was to characterize published articles reporting HEDIS® SUD measures and recommend future work on applying and investigating SUD HEDIS® metrics and their effect on SUD treatments.
Materials And Methods: The PRISMA-ScR scoping review protocol was used to find published work and investigate the most common reported baseline characteristics, HEDIS® metric outcomes, and knowledge gaps.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!