Alkaline anaerobic fermentation (AAF) of waste activated sludge (WAS) has been demonstrated to be promising for short-chain fatty acids (SCFAs) recovery. However, high-strength metals and EPSs in the landfill leachate-derived WAS (LL-WAS) would stabilize its structure, suppressing AAF performance. To improve sludge solubilization and SCFAs production, AAF was coupled with EDTA addition for LL-WAS treatment. The results show that sludge solubilization at AAF-EDTA was promoted by 62.8% than AAF, releasing 21.8% more soluble COD. The maximal SCFAs production of 477.4 mg COD/g VSS was thus achieved, i.e., 1.21 and 6.13 times those at AAF and the control, respectively. SCFAs composition was also improved with more acetic and propionic acids (80.8% versus 64.3%). Metals bridging EPSs were chelated by EDTA, which significantly dissolved metals from sludge matrix (e.g., 23.28 times higher soluble Ca than AAF). EPSs tightly bound with microbial cells were thus destructed (e.g., 4.72 times more protein release than alkaline treatment), causing an easier sludge disruption and subsequently a higher SCFAs production by hydroxide ions. These findings suggest an effective EDTA-supported AAF for metals and EPSs-rich WAS to recover carbon source.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2023.117523 | DOI Listing |
J Agric Food Chem
January 2025
State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
The amylolytic susceptibility of starch-lipid complexes with different forms of crystallites has been studied extensively, but the fermentation properties of these complexes remain little understood. Hence, the fecal fermentation properties of starch-lipid complexes with V-type and V-type crystallites were investigated in the present study. Compared to V-type complexes, fermentation of V-type complexes caused more severe disruption to the crystallites and resulted in greater acid, reducing sugar, and short-chain fatty acids (SCFAs) production.
View Article and Find Full Text PDFPrz Gastroenterol
March 2024
Department of General Surgery, Medical Centre of West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan.
Introduction: The gut microbiome maintains the mucus membrane barrier's integrity, and it is modulated by the host's immune system.
Aim: To detect the effect of microbiota modulation using probiotics, prebiotics, symbiotics, and natural changes on colorectal cancers (CRCs).
Methods: A PubMed search was conducted to retrieve the original and articles published in English language from 2010 until 2021 containing the following keywords: 1) CRCs, 2) CRCs treatment (i.
Poult Sci
December 2024
dsm-firmenich, Kaiseraugst, Switzerland.
A total of 1,436,000 Ross 380 AP broiler chicks were included in the experiment, which was conducted in two cycles with 20 houses per cycle and 35,900 birds per house. The objective was to evaluate, under field conditions, the impact of a precision biotic (PB) on the growth performance and cecal microbiome of broiler chickens, in comparison to enzymatically hydrolyzed yeast (EHY) and butyrate (BT) in an antibiotic-free diet. Each cycle consisted of six (6) houses under PB supplementation, and 14 houses under the regular dietary program used by the integration.
View Article and Find Full Text PDFRheumatoid arthritis (RA) is a chronic autoimmune disease characterized by persistent joint inflammation, damage, and loss of function. In recent years, the role of gut microbiota and its metabolites in immune regulation has attracted increasing attention. The gut microbiota influences the host immune system's homeostasis through various mechanisms, regulating the differentiation, function, and immune tolerance of immune cells.
View Article and Find Full Text PDFBraz J Microbiol
January 2025
Department of Animal Science, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
The intestinal microbiota is widely recognized as an integral factor in host health, metabolism, and immunity. In this study, the impact of dietary fiber sources on the intestinal microbiota and the production of short-chain fatty acids (SCFAs) was evaluated in Lohmann White laying hens. The hens were divided into four treatment groups: a control diet without fiber, a diet with wheat bran (mixed fibers), a diet with insoluble fiber (cellulose), and a diet with soluble fiber (pectin), with six replicates of four hens each.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!