3D microelectrode arrays, pushing the bounds of sensitivity toward a generic platform for point-of-care diagnostics.

Biosens Bioelectron

Digital Sensing Ltd, 16 Beatrice Tinsley Crescent, Auckland, 0632, New Zealand; Catalyst Tec Limited, 16 Beatrice Tinsley Crescent, Auckland, 0632, New Zealand; Chemical and Materials Engineering, The University of Auckland, Auckland, 1010, New Zealand. Electronic address:

Published: May 2023

The increased sensitivity of microelectrode arrays (MEAs) over macroelectrodes for biosensing is well established, and results from reducing the diffusion gradient of the target species to and from the electrode surfaces. The current study describes the fabrication and characterisation of a polymer-based MEA, which exploits the advantages of three dimensionality (3D). Firstly, the unique 3D formfactor promotes release of the gold tips from an inert layer in a controlled fashion, to form a highly reproducible array of microelectrodes in a single step. The 3D topography of the fabricated MEAs significantly enhances the diffusion profile of the target species to the electrode which results in higher sensitivity. Furthermore, the "sharpness" of the 3D structure induces differential current distribution that is focused at the apices of the individual electrodes, reducing the active area, and thereby overcoming the requirement for the electrodes to be sub-micron in size before true MEA behaviour can be achieved. The electrochemical characteristics of the 3D MEAs shows ideal micro-electrode behaviour, with a level of sensitivity of three orders of magnitude greater than that of enzyme-linked immunosorbent assays (ELISA), as the optical based gold standard. The application of the 3D MEAs uses the combination of enzyme-label and substrate approach employed in ELISAs as a generic basis for biosensing and can hence be applied to the plethora of targets that utilise the ELISA approach. As an example, the 3D MEAs are applied to the detection of RNA and demonstrate a level of detection down to single digit picomolar concentrations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2023.115154DOI Listing

Publication Analysis

Top Keywords

microelectrode arrays
8
target species
8
species electrode
8
meas
5
arrays pushing
4
pushing bounds
4
sensitivity
4
bounds sensitivity
4
sensitivity generic
4
generic platform
4

Similar Publications

Intracellular electrophysiology is essential in neuroscience, cardiology, and pharmacology for studying cells' electrical properties. Traditional methods like patch-clamp are precise but low-throughput and invasive. Nanoelectrode Arrays (NEAs) offer a promising alternative by enabling simultaneous intracellular and extracellular action potential (iAP and eAP) recordings with high throughput.

View Article and Find Full Text PDF

Presently, the in vitro recording of intracellular neuronal signals on microelectrode arrays (MEAs) requires complex 3D nanostructures or invasive and approaches such as electroporation. Here, it is shown that laser poration enables intracellular coupling on planar electrodes without damaging neurons or altering their spontaneous electrophysiological activity, allowing the process to be repeated multiple times on the same cells. This capability distinguishes laser-based neuron poration from more invasive methods like electroporation, which typically serve as endpoint measurement for cells.

View Article and Find Full Text PDF

Epithelial tissues in vitro undergo dynamic changes while differentiating heterogeneously on the culture substrate. This gives rise to diverse cellular arrangements which are undistinguished by conventional analysis approaches, such as transepithelial electrical resistance measurement or permeability assays. In this context, solid substrate-based systems with integrated electrodes and electrochemical impedance monitoring capability can address the limited spatiotemporal resolution of traditional porous membrane-based methods.

View Article and Find Full Text PDF

Cognition relies on transforming sensory inputs into a generalizable understanding of the world. Mirror neurons have been proposed to underlie this process, mapping visual representations of others' actions and sensations onto neurons that mediate our own, providing a conduit for understanding. However, this theory has limitations.

View Article and Find Full Text PDF

This study characterizes a fluorescent -tdTomato neuronal reporter mouse line with strong labeling of axons throughout the optic nerve, of retinal ganglion cell (RGC) soma in the ganglion cell layer (GCL), and of RGC dendrites in the inner plexiform layer (IPL). The model facilitated assessment of RGC loss in models of degeneration and of RGC detection in mixed neural/glial cultures. The tdTomato signal showed strong overlap with >98% cells immunolabeled with RGC markers RBPMS or BRN3A, consistent with the ubiquitous presence of the vesicular glutamate transporter 2 (VGUT2, SLC17A6) in all RGC subtypes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!