A photosensitizer plays a vital role in adjusting the optical and electrochemical properties that affect the performance of dye-sensitized solar cells (DSSCs). Therefore, it should meet critical requirements for efficient operation of DSSCs. This study proposes catechin, a natural compound, as a photosensitizer and modifies its properties through hybridization with graphene quantum dots (GQDs). Density functional theory (DFT) and time-dependent DFT methods were used to investigate the geometrical, optical, and electronic properties. Twelve nanocomposites of catechin attached to carboxylated/uncarboxylated GQD were designed. The GQD was further doped with central/terminal boron atom or decorated with boron groups (organo-borane, borinic, and boronic groups). The available experimental data of parent catechin was used to validate the elected functional and basis set. Through hybridization, the energy gap of catechin was significantly narrowed by 50.66-61.48%. Therefore, its absorption was shifted from the UV to the visible region which matches the solar spectrum. Also, increasing the absorption intensity led to high light-harvesting efficiency close to unity that can increase current generation. The energy levels of designed dye nanocomposites are appropriately aligned with the conduction band and redox potential, indicating the feasibility of electron injection and regeneration. The observed properties confirm that the reported materials exhibit characteristics of interest thus they could be promising candidates for applications in DSSCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmgm.2023.108427 | DOI Listing |
Nanotechnology
January 2025
Muhayil Asir, Applied College, King Khalid University, Abha 62529, Saudi Arabia.
Materials (Basel)
December 2024
Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Skłodowska Str., 41-819 Zabrze, Poland.
Phenothiazine-based photosensitizers bear the intrinsic potential to substitute various expensive organometallic dyes owing to the strong electron-donating nature of the former. If coupled with a strong acceptor unit and the length of N-alkyl chain is appropriately chosen, they can easily produce high efficiency levels in dye-sensitized solar cells. Here, three novel D-A dyes containing 1H-tetrazole-5-acrylic acid as an acceptor were synthesized by varying the N-alkyl chain length at its phenothiazine core and were exploited in dye-sensitized solar cells.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819 Zabrze, Poland.
In this study, a polymer gel electrolyte based on polyacrylonitrile was synthesized with varying polymer-to-liquid-electrolyte ratios. DSSCs incorporating a 1:3 ratio showed optimum PV parameters. Choosing this proportion, the effect of incorporating the photoresponsive AZO dye into this polymer electrolyte was studied.
View Article and Find Full Text PDFHeliyon
January 2025
Advanced Functional Materials Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia.
In response to escalating global concerns over environmental pollution, the development of green dye-sensitized solar cells (DSSCs) has emerged as a promising technology for solar energy conversion. This study harnesses the potential of rice husk, an abundant agricultural waste in Indonesia, by extracting lignin through a simple recycling method. Lignin acts as a natural, non-toxic dopant and template for TiO₂ composites, enhancing the stability of the photoanode in DSSCs.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Department of Chemistry, Khalifa University, SAN Campus, Abu Dhabi, United Arab Emirates.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!