Repeated administration of acrylamide for 28 days suppresses adult neurogenesis of the olfactory bulb in young-adult rats.

Toxicol Lett

Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan. Electronic address:

Published: April 2023

Acrylamide (AA) is a neurotoxicant that inhibits synaptic function in distal axons. We previously found that AA decreased neural cell lineages during late-stage differentiation of adult hippocampal neurogenesis and downregulated genes related to neurotrophic factor, neuronal migration, neurite outgrowth, and synapse formation in the hippocampal dentate gyrus in rats. To investigate whether olfactory bulb (OB)-subventricular zone (SVZ) neurogenesis is similarly affected by AA exposure, AA was administered to 7-week-old male rats via oral gavage at doses of 0, 5, 10, and 20 mg/kg for 28 days. Immunohistochemical analysis revealed that AA decreased the numbers of doublecortin-positive cells and polysialic acid-neural cell adhesion molecule cells in the OB. On the other hand, the numbers of doublecortin cells and polysialic acid-neural cell adhesion molecule cells in the SVZ did not change with AA exposure, suggesting that AA impaired neuroblasts migrating in the rostral migratory stream and OB. Gene expression analysis in the OB revealed that AA downregulated Bdnf and Ncam2, which are related to neuronal differentiation and migration. These results suggest that AA decreased neuroblasts in the OB by suppressing neuronal migration. Thus, AA decreased neuronal cell lineages during late-stage differentiation of adult neurogenesis in the OB-SVZ, similar to the effect on adult hippocampal neurogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.toxlet.2023.02.004DOI Listing

Publication Analysis

Top Keywords

adult neurogenesis
8
olfactory bulb
8
cell lineages
8
lineages late-stage
8
late-stage differentiation
8
differentiation adult
8
adult hippocampal
8
hippocampal neurogenesis
8
neuronal migration
8
analysis revealed
8

Similar Publications

A Novel Deer Antler-Inspired Bone Graft Triggers Rapid Bone Regeneration.

Adv Mater

December 2024

Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China.

Adult mammals are unable to regenerate bulky bone tissues, making large bone defects clinically challenging. Deer antler represents an exception to this rule, exhibiting the fastest bony growth in mammals, offering a unique opportunity to explore novel strategies for rapid bone regeneration. Here, a bone graft exploiting the biochemical, biophysical, and structural characteristics of antlers is constructed.

View Article and Find Full Text PDF

PKM2 is a key factor to regulate neurogenesis and cognition by controlling lactate homeostasis.

Stem Cell Reports

December 2024

Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China; Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China. Electronic address:

Adult hippocampal neurogenesis (AHN), the process of generating new neurons from adult neural stem/progenitor cells (NSPCs), is crucial for cognitive functions and is influenced by numerous factors, including metabolic processes. Pyruvate kinase M2 (PKM2), a key rate-limiting enzyme in glycolysis, catalyzes the production of pyruvate, which undergoes either oxidative phosphorylation or anaerobic oxidation. We observed that PKM2 is highly expressed in NSPCs, but its significance remains unclear for AHN and cognition.

View Article and Find Full Text PDF

In the mammalian brain, new neurons continue to be generated throughout life in a process known as adult neurogenesis. The role of adult-generated neurons has been broadly studied across laboratories, and mounting evidence suggests a strong link to the HPA axis and concomitant dysregulations in patients diagnosed with mood disorders. Psychedelic compounds, such as phenethylamines, tryptamines, cannabinoids, and a variety of ever-growing chemical categories, have emerged as therapeutic options for neuropsychiatric disorders, while numerous reports link their effects to increased adult neurogenesis.

View Article and Find Full Text PDF

The RNA-binding protein Modulo promotes neural stem cell maintenance in Drosophila.

PLoS One

December 2024

Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America.

A small population of stem cells in the developing Drosophila central nervous system generates the large number of different cell types that make up the adult brain. To achieve this, these neural stem cells (neuroblasts, NBs) divide asymmetrically to produce non-identical daughter cells. The balance between stem cell self-renewal and neural differentiation is regulated by various cellular machinery, including transcription factors, chromatin remodelers, and RNA-binding proteins.

View Article and Find Full Text PDF

Cranial radiation therapy (RT) for brain cancers is often associated with the development of radiation-induced cognitive dysfunction (RICD). RICD significantly impacts the quality of life for cancer survivors, highlighting an unmet medical need. Previous human studies revealed a marked reduction in plasma brain-derived neurotrophic factor (BDNF) post-chronic chemotherapy, linking this decline to a substantial cognitive dysfunction among cancer survivors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!