Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is standard care for severe motor symptoms of Parkinson's disease (PD). However, a challenge of DBS remains improving gait. Gait has been associated with the cholinergic system in the pedunculopontine nucleus (PPN). In this study, we investigated the effects of long-term intermittent bilateral STN-DBS on PPN cholinergic neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) Parkinsonian mouse model. Motor behavior, previously assessed by the automated Catwalk gait analysis, demonstrated a parkinsonian-like motor phenotype with static and dynamic gait impairments, which were reversed by STN-DBS. In this study, a subset of brains was further immunohistochemically processed for choline acetyltransferase (ChAT) and the neuronal activation marker c-Fos. MPTP treatment resulted in a significant reduction of PPN ChAT expressing neurons compared to saline treatment. STN-DBS did not alter the number of ChAT expressing neurons, nor the number of double-labelled PPN neurons for ChAT and c-Fos. Although STN-DBS improved gait in our model this was not associated with an altered expression or activation of PPN acetylcholine neurons. Motor and gait effects of STN-DBS are therefore less likely to be mediated by the STN-PPN connection and PPN cholinergic system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neulet.2023.137134 | DOI Listing |
J Biomech
March 2025
Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University, Capital Medical University School of Stomatology, Beijing 100050, China.
Mechanical loading could affect bone remodeling, which involves the balance between bone resorption and formation. During bone remodeling, osteoblasts act as the primary sensors of mechanical signals, as well as the effectors to translate these signals into bone remodeling. Furthermore, osteoblasts express the Non-Neuronal Cholinergic System (NNCS), including acetylcholine (ACh) and α7 nicotinic Acetylcholine Receptor (α7nAChR), which regulates cellular function.
View Article and Find Full Text PDFSci Rep
March 2025
Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India.
Tinospora cordifolia has been used for thousands of years to treat various health conditions, including neurodegenerative diseases. The study aimed to elucidate the mechanism of action and protein targets of T. cordifolia in the context of Alzheimer's disease through untargeted metabolomics and network pharmacology.
View Article and Find Full Text PDFSci Rep
March 2025
Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alazarita 21521, Alexandria, Egypt.
Preeclampsia (PE) and peripartum sepsis are two complications of pregnancy and are often associated with disturbed renal function due possibly to dysregulated renin angiotensin system. Here we evaluated hemodynamic and renal consequences of separate and combined PE and sepsis insults in weaning mothers and tested whether this interaction is influenced by prenatally-administered losartan (AT1-receptor blocker) or pioglitazone (PPARγ agonist). The PE-rises in blood pressure and proteinuria induced by gestational nitric oxide synthase inhibition (L-NAME, 50 mg/kg/day for 7 days) were attenuated after simultaneous treatment with losartan or pioglitazone.
View Article and Find Full Text PDFPharmacol Biochem Behav
March 2025
Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland. Electronic address:
Clinical studies provide evidence that scopolamine, a nonselective antagonist of muscarinic cholinergic receptors, exerts rapid and prolonged antidepressant effects. However, its use as a psychiatric drug has been limited due to its significant adverse effects. A therapeutic option that could help reduce the adverse effects of scopolamine is its coadministration at lower doses with other substances with similar antidepressant properties.
View Article and Find Full Text PDFNeurochem Res
March 2025
Department of Genetics, Ribeirão Preto Medical School, University of São Paulo - USP, São Paulo, Brazil.
Patients with Alzheimer's disease (AD) have two types of abnormal protein buildups: amyloid plaques and neurofibrillary tangles, in addition to the early synaptic dysfunction associated with the enzymes acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Impairment of the glutamatergic system is also crucial for neuronal survival, as it can cause synaptic dysfunction that overstimulates glutamate receptors, especially N-methyl-d-aspartate receptors (NMDARs). Another protein affecting neuronal health is glycogen synthase kinase-3 (GSK3), a widely preserved serine/threonine protein kinase linked to neuronal disorders, including AD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!