Application of genetic algorithm in optimization parallel ensemble-based machine learning algorithms to flood susceptibility mapping using radar satellite imagery.

Sci Total Environ

Dept. of Computer Science & Engineering and Convergence Engineering for Intelligent Drone, XR Research Center, Sejong University, Seoul, Republic of Korea. Electronic address:

Published: May 2023

Floods are the natural disaster that occurs most frequently due to the weather and causes the most widespread destruction. The purpose of the proposed research is to analyze flood susceptibility mapping (FSM) in the Sulaymaniyah province of Iraq. This study employed a genetic algorithm (GA) to fine-tune parallel ensemble-based machine learning algorithms (random forest (RF) and bootstrap aggregation (Bagging)). Four machine learning algorithms (RF, Bagging, RF-GA, and Bagging-GA) were used to build FSM in the study area. To provide inputs into parallel ensemble-based machine learning algorithms, we gathered and processed data from meteorological (Rainfall), satellite image (flood inventory, normalized difference vegetation index (NDVI), aspect, land cover, altitude, stream power index (SPI), plan curvature, topographic wetness index (TWI), slope) and geographic sources (geology). For this research, Sentinel-1 synthetic aperture radar (SAR) satellite images were utilized to locate flooded areas and create an inventory map of floods. To train and validate the model, we employed 70 % and 30 % of 160 selected flood locations, respectively. Multicollinearity, frequency ratio (FR), and Geodetector methods were used for data preprocessing. Four metrics were utilized to assess the FSM performance: the root mean square error (RMSE), the area under the receiver-operator characteristic curve (AUC-ROC), the Taylor diagram, and the seed cell area index (SCAI). The results exhibited that all the suggested models have high accuracy of prediction, but the performance of Bagging-GA (RMSE (Train = 0.1793, Test = 0.4543)) was slightly better than RF-GA (RMSE (Train = 0.1803, Test = 0.4563)), Bagging (RMSE (Train = 0.2191, Test = 0.4566)), and RF (RMSE (Train = 0.2529, Test = 0.4724)). According to the ROC index, the Bagging-GA model (AUC = 0.935) was the most accurate in flood susceptibility modeling, followed by the RF-GA (AUC = 0.904), the Bagging (AUC = 0.872), and the RF (AUC = 0.847) models. The study's identification of high-risk flood zones and the most significant factors contributing to flooding make it a helpful resource for flood management.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.162285DOI Listing

Publication Analysis

Top Keywords

machine learning
16
learning algorithms
16
parallel ensemble-based
12
ensemble-based machine
12
flood susceptibility
12
genetic algorithm
8
susceptibility mapping
8
flood
7
rmse
5
application genetic
4

Similar Publications

Neurodevelopmental impairments associated with congenital heart disease (CHD) may arise from perturbations in brain developmental pathways, including the formation of sulcal patterns. While genetic factors contribute to sulcal features, the association of noncoding variants (ncDNVs) with sulcal patterns in people with CHD remains poorly understood. Leveraging deep learning models, we examined the predicted impact of ncDNVs on gene regulatory signals.

View Article and Find Full Text PDF

Objective: The vicious circle model of obesity proposes that the hippocampus plays a crucial role in food reward processing and obesity. However, few studies focused on whether and how pediatric obesity influences the potential direction of information exchange between the hippocampus and key regions, as well as whether these alterations in neural interaction could predict future BMI and eating behaviors.

Methods: In this longitudinal study, a total of 39 children with excess weight (overweight/obesity) and 51 children with normal weight, aged 8 to 12, underwent resting-state fMRI.

View Article and Find Full Text PDF

Background And Aims: Patient-reported outcomes (PROs) are vital in assessing disease activity and treatment outcomes in inflammatory bowel disease (IBD). However, manual extraction of these PROs from the free-text of clinical notes is burdensome. We aimed to improve data curation from free-text information in the electronic health record, making it more available for research and quality improvement.

View Article and Find Full Text PDF

Understanding the oxygen reduction reaction (ORR) mechanism and accurately characterizing the reaction interface are essential for improving fuel cell efficiency. We developed an active learning framework combining machine learning force fields and enhanced sampling to explore the dynamics and kinetics of the ORR on Fe-N/C using a fully explicit solvent model. Different possible reaction paths have been explored and the O adsorption process is confirmed as the rate-determining step of the ORR at the Fe-N/C-water interface, which needs to overcome a free energy barrier of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!