Floods are the natural disaster that occurs most frequently due to the weather and causes the most widespread destruction. The purpose of the proposed research is to analyze flood susceptibility mapping (FSM) in the Sulaymaniyah province of Iraq. This study employed a genetic algorithm (GA) to fine-tune parallel ensemble-based machine learning algorithms (random forest (RF) and bootstrap aggregation (Bagging)). Four machine learning algorithms (RF, Bagging, RF-GA, and Bagging-GA) were used to build FSM in the study area. To provide inputs into parallel ensemble-based machine learning algorithms, we gathered and processed data from meteorological (Rainfall), satellite image (flood inventory, normalized difference vegetation index (NDVI), aspect, land cover, altitude, stream power index (SPI), plan curvature, topographic wetness index (TWI), slope) and geographic sources (geology). For this research, Sentinel-1 synthetic aperture radar (SAR) satellite images were utilized to locate flooded areas and create an inventory map of floods. To train and validate the model, we employed 70 % and 30 % of 160 selected flood locations, respectively. Multicollinearity, frequency ratio (FR), and Geodetector methods were used for data preprocessing. Four metrics were utilized to assess the FSM performance: the root mean square error (RMSE), the area under the receiver-operator characteristic curve (AUC-ROC), the Taylor diagram, and the seed cell area index (SCAI). The results exhibited that all the suggested models have high accuracy of prediction, but the performance of Bagging-GA (RMSE (Train = 0.1793, Test = 0.4543)) was slightly better than RF-GA (RMSE (Train = 0.1803, Test = 0.4563)), Bagging (RMSE (Train = 0.2191, Test = 0.4566)), and RF (RMSE (Train = 0.2529, Test = 0.4724)). According to the ROC index, the Bagging-GA model (AUC = 0.935) was the most accurate in flood susceptibility modeling, followed by the RF-GA (AUC = 0.904), the Bagging (AUC = 0.872), and the RF (AUC = 0.847) models. The study's identification of high-risk flood zones and the most significant factors contributing to flooding make it a helpful resource for flood management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.162285 | DOI Listing |
iScience
February 2025
Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.
Neurodevelopmental impairments associated with congenital heart disease (CHD) may arise from perturbations in brain developmental pathways, including the formation of sulcal patterns. While genetic factors contribute to sulcal features, the association of noncoding variants (ncDNVs) with sulcal patterns in people with CHD remains poorly understood. Leveraging deep learning models, we examined the predicted impact of ncDNVs on gene regulatory signals.
View Article and Find Full Text PDFInt J Clin Health Psychol
January 2025
Faculty of Psychology, Southwest University, Chongqing 400715, China.
Objective: The vicious circle model of obesity proposes that the hippocampus plays a crucial role in food reward processing and obesity. However, few studies focused on whether and how pediatric obesity influences the potential direction of information exchange between the hippocampus and key regions, as well as whether these alterations in neural interaction could predict future BMI and eating behaviors.
Methods: In this longitudinal study, a total of 39 children with excess weight (overweight/obesity) and 51 children with normal weight, aged 8 to 12, underwent resting-state fMRI.
Gastro Hep Adv
September 2024
Blacktown Clinical School, School of Medicine, Western Sydney University, Penrith, New South Wales, Australia.
Gastro Hep Adv
October 2024
Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, California.
Background And Aims: Patient-reported outcomes (PROs) are vital in assessing disease activity and treatment outcomes in inflammatory bowel disease (IBD). However, manual extraction of these PROs from the free-text of clinical notes is burdensome. We aimed to improve data curation from free-text information in the electronic health record, making it more available for research and quality improvement.
View Article and Find Full Text PDFChem Sci
January 2025
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University Suzhou Jiangsu 215123 China
Understanding the oxygen reduction reaction (ORR) mechanism and accurately characterizing the reaction interface are essential for improving fuel cell efficiency. We developed an active learning framework combining machine learning force fields and enhanced sampling to explore the dynamics and kinetics of the ORR on Fe-N/C using a fully explicit solvent model. Different possible reaction paths have been explored and the O adsorption process is confirmed as the rate-determining step of the ORR at the Fe-N/C-water interface, which needs to overcome a free energy barrier of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!