Researchers agree that there is substantial evidence of an increasing trend in both the frequency and duration of extreme temperature events. Increasing extreme temperature events will place more pressure on public health and emergency medical resources, and societies will need to find effective and reliable solutions to adapt to hotter summers. This study developed an effective method to predict the number of daily heat-related ambulance calls. Both national- and regional-level models were developed to evaluate the performance of machine-learning-based methods on heat-related ambulance call prediction. The national model showed a high prediction accuracy and can be applied over most regions, while the regional model showed extremely high prediction accuracy in each corresponding region and reliable accuracy in special cases. We found that the introduction of heatwave features, including accumulated heat stress, heat acclimatization, and optimal temperature, significantly improved prediction accuracy. The adjusted coefficient of determination (adjusted R) of the national model improved from 0.9061 to 0.9659 by including these features, and the adjusted R of the regional model also improved from 0.9102 to 0.9860. Furthermore, we used five bias-corrected global climate models (GCMs) to forecast the total number of summer heat-related ambulance calls under three different future climate scenarios nationally and regionally. Our analysis demonstrated that, at the end of the 21st century, the total number of heat-related ambulance calls in Japan will reach approximately 250,000 per year (nearly four times the current amount) under SSP-5.85. Our results suggest that disaster management agencies can use this highly accurate model to forecast potential high emergency medical resource burden caused by extreme heat events, allowing them to raise and improve public awareness and prepare countermeasures in advance. The method proposed in Japan in this paper can be applied to other countries that have relevant data and weather information systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.162283DOI Listing

Publication Analysis

Top Keywords

heat-related ambulance
20
ambulance calls
16
prediction accuracy
12
heatwave features
8
extreme temperature
8
temperature events
8
emergency medical
8
national model
8
high prediction
8
regional model
8

Similar Publications

Background: Future temperature effects on mortality and morbidity may differ. However, studies comparing projected future temperature-attributable mortality and morbidity in the same setting are limited. Moreover, these studies did not consider future population change, human adaptation, and the variations in subpopulation susceptibility.

View Article and Find Full Text PDF

Estimating the heat-related mortality and morbidity burden in the province of Quebec, Canada.

Environ Res

September 2024

Centre Eau Terre Environnement, Institut national de la recherche scientifique (INRS), 490 de la Couronne, Québec, QC, Canada, G1K 9A9.

Background: As climate change increases the frequency and intensity of extreme heat events, there is an urgent need to quantify the heat-related health burden. However, most past studies have focussed on a single health outcome (mainly mortality) or on specific heatwaves, thus providing limited knowledge of the total pressure heat exerts on health services.

Objectives: This study aims to quantify the heat-related mortality and morbidity burden for five different health outcomes including all-cause mortality, hospitalizations, emergency department (ED) visits, ambulance transports and calls to a health hotline, using the province of Quebec (Canada) as a case study.

View Article and Find Full Text PDF

Background: Air conditioners can prevent heat-related illness and mortality, but the increased use of air conditioners may enhance susceptibility to heat-related illnesses during large-scale power failures. Here, we examined the risks of heat-related illness ambulance transport (HIAT) and mortality associated with typhoon-related electricity reduction (ER) in the summer months in the Tokyo metropolitan area.

Methods: We conducted event study analyses to compare temperature-HIAT and mortality associations before and after the power outage (July to September 2019).

View Article and Find Full Text PDF

Background: Although the effects of temperature on genitourinary morbidity and mortality have been investigated in several countries, it remains largely unexplored in Japan. We investigated the association between ambient temperature and genitourinary emergency ambulance dispatches (EADs) in Japan and the modifying roles of sex, age, and illness severity.

Methods: We conducted a time-stratified case-crossover study with conditional quasi-Poisson regression to estimate the association between mean temperature and genitourinary EADs in all prefectures of Japan between 2015 and 2019.

View Article and Find Full Text PDF

Background: During the summer of 2021, a deadly, unprecedented multiday Heat Dome engulfed western Canada. As a result of this extreme heat event (EHE), emergency dispatchers received an unparalleled increase in incoming 911 calls for ambulance, police, and fire (as first responders) services to attend to hundreds of heat-vulnerable community members succumbing to the heat. With 103 all-time heat records broken during this EHE and indoor temperatures of nearly 40°C, the first responders attending these calls faced extensive job demands and highly challenging operating conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!