Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Leucine-rich repeat and immunoglobulin domain containing protein (LRR-IG) family is an important class of immune molecules in invertebrates. Herein, a novel LRR-IG, named as EsLRR-IG5, was identified from Eriocheir sinensis. It contained typical structures of LRR-IG including an N-terminal LRR region and three IG domains. EsLRR-IG5 was ubiquitously expressed in all the tested tissues, and its transcriptional levels increased after being challenged with Staphylococcus aureus and Vibrio parahaemolyticus. Recombinant proteins of LRR and IG domains from the EsLRR-IG5 (named as rEsLRR5 and rEsIG5) were successfully obtained. rEsLRR5 and rEsIG5 could bind to both gram-positive bacteria and gram-negative bacteria as well as lipopolysaccharide (LPS) and peptidoglycan (PGN). Moreover, rEsLRR5 and rEsIG5 exhibited antibacterial activities against V. parahaemolyticus and V. alginolyticus and displayed bacterial agglutination activities against S. aureus, Corynebacterium glutamicum, Micrococcus lysodeikticus, V. parahaemolyticus and V. alginolyticus. The scanning electron microscopy (SEM) observation revealed that the membrane integrity of V. parahaemolyticus and V. alginolyticus was destroyed by rEsLRR5 and rEsIG5, which may lead to the leakage of cell contents and death. This study provided clues for further studies on the immune defense mechanism mediated by LRR-IG in crustaceans and provided candidate antibacterial agents for prevention and control of diseases in aquaculture.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2023.123732 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!