A comprehensive review on polylactic acid (PLA) - Synthesis, processing and application in food packaging.

Int J Biol Macromol

Bioenergy and Bioremediation Laboratory, Department of Microbiology, Alagappa University, Karaikudi, Tamil Nadu 630003, India. Electronic address:

Published: April 2023

Plastics play an essential role in food packaging; their primary function is to preserve the nature of the food, ensure adequate shelf life and ensure food safety. Plastics are being produced on a global scale in excess of 320 million tonnes annually, with demand rising to reflect the material in wide range of applications. Nowadays, the packaging industry is a significant consumer of synthetic plastic made from fossil fuels. Petrochemical-based plastics are regarded as the preferred material for packaging. Nonetheless, using these plastics in large quantities results in a long-standing environment. Environmental pollution and the depletion of fossil fuels have prompted researchers and manufacturers to develop eco-friendly biodegradable polymers to replace petrochemical-based polymers. As a result, the production of eco-friendly food packaging material has sparked increased interest as a viable alternative to petrochemical-based polymers. Polylactic acid (PLA) is one of the compostable thermoplastic biopolymers that is biodegradable and renewable in nature. High-molecular-weight PLA can be used to produce fibres, flexible, non-wovens, hard and durable materials (100,000 Da or even higher).The chapter focuses on food packaging techniques, food industry waste, biopolymers, their classification, PLA synthesis, the importance of PLA properties for food packaging, and technologies used to process PLA in food packaging.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.123715DOI Listing

Publication Analysis

Top Keywords

food packaging
24
food
9
polylactic acid
8
acid pla
8
pla synthesis
8
packaging
8
packaging plastics
8
fossil fuels
8
petrochemical-based polymers
8
pla
6

Similar Publications

Properties of gelatin-zein films prepared by blending method and layer-by-layer self-assembly method.

Int J Biol Macromol

December 2024

School of Food and Bioengineering, Xihua University, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu, Sichuan Province 611130, China. Electronic address:

In this study, physicochemical and structural properties of gelatin-zein blending films and bilayer films prepared through blending and layer-by-layer self-assembly method under TGase crosslinking were systematically compared. The ratios of gelatin to zein examined were 2:1, 1:1, and 1:2. Results showed that the tensile strength of both blending films and bilayer films was the highest when the ratio of gelatin to zein was 2:1, which was 4.

View Article and Find Full Text PDF

Characterization of a biocomposite film using coconut jelly powder to improve arrowroot starch and sodium alginate film forming properties.

Int J Biol Macromol

December 2024

Department of Marine, Faculty of Fisheries and Marine, Universitas Airlangga, Campus C UNAIR, Mulyorejo, Surabaya 60115, Indonesia; Research Group of Post-harvest, Processing Technology, and Bioproducts, Faculty of Fisheries and Marine, Universitas Airlangga, Mulyorejo, Surabaya 60115, Indonesia. Electronic address:

Composite polymers are promising solution to structural setbacks of starch and alginate-based films due to their hydrophilic attributes. Hence, this study aimed to investigate young coconut jelly powder (CJP), an under-utilized by-waste, as a filler using the casting method to develop a novel biocomposite from increments of CJP (1-3 %) to a blended resin of arrowroot starch, sodium alginate, and glycerol. Moreover, the films were characterized by physicomechanical (visual aspect, thickness, color, moisture content, tensile strength, and elongation at break); surface microstructure; water barrier (water vapor permeability, water solubility, and water activities); thermal, crystallinity, and functional group properties; soil, river water, and seawater biodegradability; and coating application in cherry tomato.

View Article and Find Full Text PDF

Curdlan inclusion modifies the rheological properties and the helix-coil transition behavior of gelatin and increases the flexibility of gelatin films.

Food Chem

December 2024

College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China; School of Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China; Shandong Ensign Industry Co., Ltd., Weifang, Shandong 262409, China. Electronic address:

Gelatin, a natural and edible polymer, has attracted wide attention for use in food and edible packaging applications. However, its inadequate properties, especially poor flexibility, limit its broader utilization. Hybridizing different polymers is a promising strategy to achieve enhanced properties.

View Article and Find Full Text PDF

The Effect of Cellulose Nanocrystals on the Molecular Organization, Thermomechanical, and Shape Memory Properties of Gelatin-Matrix Composite Films.

Gels

November 2024

Biopolymer Research & Engineering Laboratory (BIOPREL), Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad de Los Andes, Santiago 7550000, Chile.

Gelatin is a natural hydrocolloid with excellent film-forming properties, high processability, and tremendous potential in the field of edible coatings and food packaging. However, its reinforcing by materials such as cellulose nanocrystals (CNC) is often necessary to improve its mechanical behavior, including shape memory properties. Since the interaction between these polymers is complex and its mechanism still remains unclear, this work aimed to study the effect of low concentrations of CNC (2, 6, and 10 weight%) on the molecular organization, thermomechanical, and shape memory properties in mammalian gelatin-based composite films at low moisture content (~10 weight% dry base).

View Article and Find Full Text PDF

Due to the frequent occurrence of food safety problems in recent years, healthy diets are gradually receiving worldwide attention. Chemical pigments are used in smart food packaging because of their bright colors and high visibility. However, due to shortcomings such as carcinogenicity, people are gradually looking for natural pigments to be applied in the field of smart food packaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!