Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Biogenic palladium nanoparticles (bio-Pd NPs) are used for the reductive transformation and/or dehalogenation of persistent micropollutants. In this work, H (electron donor) was produced in situ by an electrochemical cell, permitting steered production of differently sized bio-Pd NPs. The catalytic activity was first assessed by the degradation of methyl orange. The NPs showing the highest catalytic activity were selected for the removal of micropollutants from secondary treated municipal wastewater. The synthesis at different H flow rates (0.310 L/hr or 0.646 L/hr) influenced the bio-Pd NPs size. The NPs produced over 6 hr at a low H flow rate had a larger size (D50 = 39.0 nm) than those produced in 3 hr at a high H flow rate (D50 = 23.2 nm). Removal of 92.1% and 44.3% of methyl orange was obtained after 30 min for the NPs with sizes of 39.0 nm and 23.2 nm, respectively. Bio-Pd NPs of 39.0 nm were used to treat micropollutants present in secondary treated municipal wastewater at concentrations ranging from µg/L to ng/L. Effective removal of 8 compounds was observed: ibuprofen (69.5%) < sulfamethoxazole (80.6%) < naproxen (81.4%) < furosemide (89.7%) < citalopram (91.7%) < diclofenac (91.9%) < atorvastatin (> 94.3%) < lorazepam (97.2%). Removal of fluorinated antibiotics occurred at > 90% efficiency. Overall, these data indicate that the size, and thus the catalytic activity of the NPs can be steered and that the removal of challenging micropollutants at environmentally relevant concentrations can be achieved through the use of bio-Pd NPs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jes.2022.08.018 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!