Purpose Of The Study: For the first time distinctions of molecular composition of the dental biofilm at the stages of exo- and endogeneous caries prevention were studied for persons with different cariogenic conditions involving synchrotron molecular spectroscopy techniques.

Material And Methods: The samples of the dental biofilm collected from participants of the research were studied at the different stages of experiment. The studies of molecular composition of the biofilms were employed involving the equipment set in the Infrared Microspectroscopy (IRM) laboratory of Australian synchrotron.

Results: Basing on the data obtained by synchrotron infrared spectroscopy with Fourier transform as well as using the calculations of the ratios between organic and mineral components and also statistical analysis of the data we could estimate the changes proceeding in the molecular composition of dental biofilm in a dependence of homeostasis conditions in the oral cavity at the stages of exo- and endogeneous caries prevention.

Conclusion: Observed changes in the values of phosphate/protein/lipid, phosphate/mineral and phospholipid/lipid ratios as well as the presence of statistically significant intra- and intergroup in these coefficients mean that mechanisms of adsorption for the ions, compounds and molecular complexes incoming from the oral fluid into the dental biofilm at the stage of exo-/endogeneous caries prevention are different for the patients in normal condition and for those ones with the developing caries.

Download full-text PDF

Source
http://dx.doi.org/10.17116/stomat202310201186DOI Listing

Publication Analysis

Top Keywords

dental biofilm
20
molecular composition
16
composition dental
12
caries prevention
12
exo-/endogeneous caries
8
stages exo-
8
exo- endogeneous
8
endogeneous caries
8
dental
5
biofilm
5

Similar Publications

Development of Synthetic Antimicrobial Peptides Based on Genomic Analysis of Streptococcus salivarius.

J Clin Lab Anal

January 2025

Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.

Background: In the oral environment, the production of bacteriocins or antimicrobial peptides (AMPs) plays a crucial role in maintaining ecological balance by impeding the proliferation of closely related microorganisms. This study aims to conduct in silico genome screening of Streptococcus salivarius to identify potential antimicrobial compounds existing as hypothetical peptides, with the goal of developing novel synthetic antimicrobial peptides.

Methods: Draft genomes of various oral Streptococcus salivarius strains were obtained from the NCBI database and subjected to analysis using bioinformatic tools, viz.

View Article and Find Full Text PDF

This study evaluated the microbial growth profile of subgingival multispecies biofilm on 3D-printable resin-based composites (PRBCs). A 96-well cell plate cultivated a 39-species biofilm associated with periodontitis over 7 days. Cylindrical specimens with 12 mm high and 3 mm diameters were prepared by the PRBC group (Cosmos Temp-Yller; Prizma 3D Bio Crown; Prizma 3D Bio Prov) and an acrylic resin as control.

View Article and Find Full Text PDF

Endodontic therapy aims at preventing or curing apical periodontitis. To conduct this, the cleaning and shaping of the canals are essential. By using an irrigant, such as sodium hypochlorite (NaOCl), practitioners attempt to wash out debris, dissolve organic and inorganic tissue, lubricate the canals, prevent smear layer formation, and disrupt biofilms.

View Article and Find Full Text PDF

Background: Periodontitis is not always satisfactorily treated with conventional scaling and root planing, and adjunctive use of antibiotics is required in clinical practice. Therefore, it is important for clinicians to understand the diversity and the antibiotic resistance of subgingival microbiota when exposed to different antibiotics.

Materials And Methods: In this study, subgingival plaques were collected from 10 periodontitis patients and 11 periodontally healthy volunteers, and their microbiota response to selective pressure of four antibiotics (amoxicillin, metronidazole, clindamycin, and tetracycline) were evaluated through 16S rRNA gene amplicon and metagenomic sequencing analysis.

View Article and Find Full Text PDF

Photodynamic and photothermal bacteria targeting nanosystems for synergistically combating bacteria and biofilms.

J Nanobiotechnology

January 2025

Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China.

The escalating hazards posed by bacterial infections underscore the imperative for pioneering advancements in next-generation antibacterial modalities and treatments. Present therapeutic methodologies are frequently impeded by the constraints of insufficient biofilm infiltration and the absence of precision in pathogen-specific targeting. In this current study, we have used chlorin e6 (Ce6), zeolitic imidazolate framework-8 (ZIF-8), polydopamine (PDA), and UBI peptide to formulate an innovative nanosystem meticulously engineered to confront bacterial infections and effectually dismantle biofilm architectures through the concerted mechanism of photodynamic therapy (PDT)/photothermal therapy (PTT) therapies, including in-depth research, especially for oral bacteria and oral biofilm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!