Effect of Geometry and Orientation on the Tensile Properties and Failure Mechanisms of Compliant Suture Joints.

ACS Appl Mater Interfaces

Department of Mechanical & Industrial Engineering, Montana State University, 220 Roberts Hall, Bozeman, Montana 59717, United States.

Published: March 2023

Compliant sutures surrounded by stiff matrices are present in biological armors and carapaces, providing enhanced mechanical performance. Understanding the mechanisms through which these sutured composites achieve outstanding properties is key to developing engineering materials with improved strength and toughness. This article studies the impact of suture geometry and load direction on the performance of suture joints using a two-stage reactive polymer resin that enables facile photopatterning of mechanical heterogeneity within a single polymer network. Compliant sinusoidal sutures with varying geometries are photopatterned into stiff matrices, generating a modulus contrast of 2 orders of magnitude. Empirical relationships are developed connecting suture wavelength and amplitude to composite performance under parallel and perpendicular loading conditions. Results indicate that a greater suture interdigitation broadly improves composite performance when loading is applied perpendicular to suture joints but has deleterious effects when loading is applied parallel to the joint. Investigations into the failure mechanisms under perpendicular loading highlight the interplay between suture geometry and crack growth stability after damage initiation occurs. Our findings could enable a framework for engineering composites and bio-inspired structures in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c21925DOI Listing

Publication Analysis

Top Keywords

suture joints
12
failure mechanisms
8
stiff matrices
8
suture geometry
8
composite performance
8
perpendicular loading
8
loading applied
8
suture
7
geometry orientation
4
orientation tensile
4

Similar Publications

Objectives: To compare the biomechanical strength and stiffness of the native posteromedial and posterolateral meniscotibial ligament complex (MTLC) to suture anchor repair of the MTLC.

Methods: Biomechanical testing was performed on 24 fresh-frozen pediatric human knees. Four conditions were tested: native posteromedial MTLC (n=14), native posterolateral MTLC (n=14), posteromedial MTLC repair (n=5), and posterolateral MTLC repair (n=5).

View Article and Find Full Text PDF

Purpose: This study aims to describe a fixation technique for coronoid fractures using suture buttons, and to biomechanically evaluate this technique in comparison to screw fixation as a time-zero pilot study.

Methods: An O'Driscoll type 2 anteromedial coronoid facet (AMCF) fracture was simulated in 20 fresh-frozen human elbows. The specimens were randomized into two groups and fracture fixation was performed with either a suture button system or a 3.

View Article and Find Full Text PDF

Tenodesis of the long head of biceps is a common shoulder surgical procedure. Tenodesis can be performed either arthroscopically or open and within the glenohumeral joint, within the bicipital groove, or below the pectoralis major tendon insertion. Arthroscopic tenodesis of the biceps tendon reduces the risk of infection.

View Article and Find Full Text PDF

Dynamic biomechanical effects of medial meniscus tears on the knee joint: a finite element analysis.

J Orthop Surg Res

January 2025

Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.

Background: Meniscus tears can change the biomechanical environment of the knee joint and might accelerate the development of osteoarthritis. The aim of this study was to investigate the dynamic biomechanical effects of different medial meniscus tear positions and tear gaps on the knee during walking.

Methods: Seven finite element models of the knee joint were constructed, including the intact medial meniscus (IMM), radial stable tears in the anterior, middle, and posterior one-third regions of the medial meniscus (RSTA, RSTM, RSTP), and the corresponding unstable tears (RUTA, RUTM, RUTP).

View Article and Find Full Text PDF

Anterior disc displacement without reduction (ADDwoR) is one of the most common types temporomandibular disorders (TMD), which is often characterized by joint pain, abnormal joint sounds, and limited mouth opening. Disc repositioning has been described as an effective method to reduce joint pain and improve range of motion. Yang's arthroscopic disc repositioning and suturing surgery has been reported to be the most stable technique with 95%-98% of success rate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!