Classical first-passage times under restart are used in a wide variety of models, yet the quantum version of the problem still misses key concepts. We study the quantum hitting time with restart using a monitored quantum walk. The restart strategy eliminates the problem of dark states, i.e., cases where the particle evades detection, while maintaining the ballistic propagation which is important for a fast search. We find profound effects of quantum oscillations on the restart problem, namely, a type of instability of the mean detection time, and optimal restart times that form staircases, with sudden drops as the rate of sampling is modified. In the absence of restart and in the Zeno limit, the detection of the walker is not possible, and we examine how restart overcomes this well-known problem, showing that the optimal restart time becomes insensitive to the sampling period.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.130.050802 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!