The performance criteria of analytical methods and the necessity for stability analysis to provide the accuracy of the results of the analyzed samples are explained in European Commission Decision 2021/808/EC and the guidance document SANTE/2021/11312. Detection of time-dependent changes in drug concentrations during storage or transport and re-analysis of samples are crucial to obtain high-quality results and reliable data. In this way, it allows toxicologists to interpret the analytical results accurately in drug analyses. The aim of this study was comprehensively to investigate the stability of benzimidazoles (levamisole hydrochloride, albendazole, albendazole-sulfone, albendazole-2-amino sulfone, albendazole sulfoxide, oxfendazole, 5-hydroxythiabendazole, triclabendazole, ketotriclabendazole, thiabendazole, flubendazole, fenbendazole sulfone) in working solutions, muscle and milk samples. For this purpose, long-term stability was evaluated over 6 months and under four different storage conditions (4 °C, -20 °C, 20 °C light and 20 °C dark) in the matrix. The influences of three freeze-thaw cycles, autosampler stability, and 60 min storage at 40 °C were investigated for short-term stability. Simultaneously, the stability of the working solutions were established over 6 months and under five different conditions (4 °C, -20 °C, -80 °C, 20 °C light, and 20 °C dark). It was found that working solutions can be stored at -80 °C or -20 °C, and it is appropriate to prepare the standard working solution freshly once a month. Storage of milk at 4 °C is suitable for some analytes (ABZ-SO, FBZ-SO, FLUBZ, ABZ, ABZ-NH2-SO) whereas for the muscle almost all substances were stable only at -20 °C. Some freeze-thaw and short-term stability changes were detected.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/19440049.2023.2180300 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!