This study investigates the fractal characteristics of the particle size and shape distribution of gangue powder in the "jaw crushing-ball milling" process using mudstone gangue. For this, fractal theory, laser particle size analyzer, scanning electron microscope and other mesoscopic research methods were introduced. This study has several main factors, including the discharge port width in the jaw crushing stage, the grinding particle size, ball-to-powder ratio in the ball milling stage, and the fractal dimension changes of the gangue in different crushing stages. The results indicate that in the process of "jaw crushing-ball milling", gangue's particle size and shape fractal dimension values changed periodically. During the jaw crushing stage, the particle size fractal dimension increases with the width of the discharge opening, ranging from 1.85 to 1.92. The value of the shape fractal dimension varies from 2.65 to 2.84. Ball milling causes the fractal dimension value of gangue particle size to increase with time before agglomeration and decrease after agglomeration. By comparing different in-grinding particle sizes and ball-to-powder ratio, it is found that the fractal dimension value of gangue particle size decreases with the increase of in-grinding particle size and increases with the increase of ball-to-powder ratio. The final gangue's particle size fractal dimension value is concentrated between 2.5 and 2.8. The fractal dimension of particle shape increases with the increase of the grinding particle size, and decreases with the increase of ball-to-powder ratio. A ball-to-powder ratio greater than 6 gradually reduces its influence on fractal dimensions, and the final shape dimension lies between 1.06 and 1.16. In addition, the increase/decrease range of particle size and shape fractal dimension decreases with the increase of ball milling time, which is also consistent with the grinding kinetics theory. As a result of the changes in particle size and shape fractal dimensions, parameters such as jaw crusher discharge port width, grinding particle size, and ball-to-powder ratio are calculated to provide a theoretical basis for the entire crushing process in the "jaw crusher-ball milling" crushing process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9937481PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0281513PLOS

Publication Analysis

Top Keywords

particle size
52
fractal dimension
36
ball-to-powder ratio
24
size shape
20
shape fractal
20
particle
15
fractal
14
size
13
grinding particle
12
ball milling
12

Similar Publications

In this study, polyethylene glycol (PEG) and dextran (Dex) were chemically modified to obtain amino-functionalized PEG (PEG-(NH)) and oxidized dextran (ODex). They were subsequently reacted via -NH and -CHO groups to synthesize a macromolecular Schiff base particle. The structures, morphologies, and thermal properties of the macromolecular Schiff base particle were characterized using Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and thermogravimetry analysis (TGA).

View Article and Find Full Text PDF

Magnetorheological (MR) fluids can be utilized in one of the fundamental operating modes of which the gradient pinch mode has been the least explored. In this unique mode non-uniform magnetic field distributions are taken advantage of to develop a so-called Venturi-like contraction in MR fluids. By adequately directing magnetic flux the material can be made solidified in the regions near the flow channel wall, thus creating a passage in the middle of the channel for the fluid to pass through.

View Article and Find Full Text PDF

The effects of 5.8-GHz microwave (MW) irradiation on the synthesis of mesoporous selenium nanoparticles (mSeNPs) in aqueous medium by reduction of selenite ions with ascorbic acid, using zinc nanoparticles as a hard template and cetyltrimethylammonium bromide (CTAB) as a micellar template, are examined for the first time with a particular emphasis on MW-particle interactions and the NPs morphology. This MW-assisted synthesis is compared to 2.

View Article and Find Full Text PDF

A cost-effective industrial TiOSO solution was employed to fabricate visible light active sulfur-doped titanium dioxide (S-TiO) via a facile hydrothermal method. The effect of calcination temperature on morphology, particle size, crystallinity, and photocatalytic property of S-TiO was systematically investigated. Successful incorporation of sulfur into TiO was confirmed by carbon-sulfur analysis, X-ray photoelectron spectroscopy (XPS), and Energy dispersive spectrometer (EDS).

View Article and Find Full Text PDF

Vegetation restoration can be effective in containing gully head advance. However, the effect of vegetation restoration type on soil aggregate stability and erosion resistance at the head of the gully is unclear. In this study, five types of vegetation restoration-Pinus tabulaeformis (PT), Prunus sibirica (PS), Caragana korshinskii (CKS), Hippophae rhamnoides (HR), and natural grassland (NG, the dominant species is Leymus chinensis)-in the gully head were studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!