Inflammatory activity and hypoxia in atherosclerotic plaques are associated with plaque instability and thrombotic complications. Recent studies show that vascular cell metabolism affects atherogenesis and thrombogenicity. This study aimed to identify the metabolites in macrophage-rich unstable plaques that modulate atherogenesis and serve as potential markers of plaque instability. Atherosclerotic plaques were induced by balloon injury in the iliofemoral arteries of rabbits fed on a conventional or 0.5% cholesterol diet. At 3 months post-balloon injury, the arteries and cardiac tissues were subjected to histological, quantitative real-time polymerase chain reaction, and metabolomic analyses. The identified metabolite-related proteins were immunohistochemically analyzed in stable and unstable plaques from human coronary arteries. The factors modulating the identified metabolites were examined in macrophages derived from human peripheral blood mononuclear cells. Metabolomic analysis revealed that choline and guanine levels in macrophage-rich arteries were upregulated compared with those in non-injured arteries and cardiac tissues. Vascular choline levels, but not guanine levels, were positively correlated with the areas immunopositive for macrophages and tumor necrosis factor (TNF)-α and matrix metalloproteinase (MMP) 9 mRNA levels in injured arteries. In human coronary arteries, choline transporter-like protein (CTL) 1 was mainly localized to macrophages within plaques. The area that was immunopositive for CTL1 in unstable plaques was significantly higher than that in stable plaques. Intracellular choline levels were upregulated upon stimulation with TNF-α but were downregulated under hypoxia in cultured macrophages. Administration of choline upregulated the expression of TNF-α and CTL1 mRNA in cultured macrophages. The transfection of CTL1 small interfering RNA decreased CTL1, TNF-α, and MMP9 mRNA levels in cultured macrophages. These results suggest that choline metabolism is altered in macrophage-rich atherosclerotic lesions and unstable plaques. Thus, CTL1 may be potential markers of plaque instability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9937458 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0281730 | PLOS |
Med J Malaysia
January 2025
Universiti Sains Malaysia, School of Medical Sciences, Department of Radiology, Health Campus, Kubang Kerian, Kelantan, Malaysia.
Introduction: Contrast-enhanced ultrasound (CEUS), an in vivo imaging tool for evaluating intraplaque neovascularisation (IPN), is an increasingly researched marker of susceptible atherosclerotic plaque. This study aims to assess the feasibility of quantifying carotid IPN using CEUS and to identify and characterise the neovascularisation in carotid plaques. The hospital's ethical committee approved the study, and the informed individual consent form of CEUS was obtained from all patients before the examination.
View Article and Find Full Text PDFFuture Cardiol
January 2025
Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
The recently introduced concept of 'exposome' emphasizes the impact of non-traditional threats onto cardiovascular health. Among these, air pollutants - particularly fine particulate matter < 2.5 μm (PM2.
View Article and Find Full Text PDFAim: To evaluate characteristics of atherosclerotic plaques (ASP) remaining after percutaneous coronary intervention (PCI) in patients with acute coronary syndrome (ACS) by coronary computed tomography angiography (CCTA).
Material And Methods: Among 249 patients (193 men) with ACS aged 58±10 years, 183 (73.5%) had myocardial infarction, 66 (26.
Cureus
November 2024
Biochemistry, Nizam's Institute of Medical Sciences, Hyderabad, IND.
Background Lipoprotein-associated phospholipase A2 (Lp-PLA2) is a key enzyme selectively expressed in unstable, rupture-prone atherosclerotic plaques. Previous research has established a strong link between the gene and the development of coronary artery disease (CAD). While traditional risk factors like cholesterol levels and blood pressure are valuable, there remains a need for more specific biomarkers to identify individuals at heightened risk of atherosclerosis before the onset of clinical symptoms.
View Article and Find Full Text PDFJ Cardiothorac Surg
December 2024
Department of Medical Informatics, Medical School of Nantong University, Nantong, 226001, China.
Background: The classification of major adverse cardiovascular event (MACE) endpoints in patients with type 2 diabetes mellitus (T2DM) and either confirmed coronary artery disease (CAD) or high CAD risk, as well as the extent of the association between T2DM and coronary plaque characteristics, remains uncertain.
Purpose: This meta-analysis aims to compare MACE endpoints between patients with diabetes and patients without diabetes based on coronary artery plaques.
Methods: We searched studies from Web of Science, PubMed, Embase, and the Cochrane Library up until September 1, 2023.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!