Context: Many individuals at high risk for fracture are never evaluated for osteoporosis and subsequently do not receive necessary treatment. Utilization of magnetic resonance imaging (MRI) is burgeoning, providing an ideal opportunity to use MRI to identify individuals with skeletal deficits. We previously reported that MRI-based bone texture was more heterogeneous in postmenopausal women with a history of fracture compared to controls.

Objective: The present study aimed to identify the microstructural characteristics that underlie trabecular texture features.

Methods: In a prospective cohort, we measured spine volumetric bone mineral density (vBMD) by quantitative computed tomography (QCT), peripheral vBMD and microarchitecture by high-resolution peripheral QCT (HRpQCT), and areal BMD (aBMD) by dual-energy x-ray absorptiometry. Vertebral trabecular bone texture was analyzed using T1-weighted MRIs. A gray level co-occurrence matrix was used to characterize the distribution and spatial organization of voxelar intensities and derive the following texture features: contrast (variability), entropy (disorder), angular second moment (ASM; uniformity), and inverse difference moment (IDM; local homogeneity).

Results: Among 46 patients (mean age 64, 54% women), lower peripheral vBMD and worse trabecular microarchitecture by HRpQCT were associated with greater texture heterogeneity by MRI-higher contrast and entropy (r ∼ -0.3 to 0.4, P < .05), lower ASM and IDM (r ∼ +0.3 to 0.4, P < .05). Lower spine vBMD by QCT was associated with higher contrast and entropy (r ∼ -0.5, P < .001), lower ASM and IDM (r ∼ +0.5, P < .001). Relationships with aBMD were less pronounced.

Conclusion: MRI-based measurements of trabecular bone texture relate to vBMD and microarchitecture, suggesting that this method reflects underlying microstructural properties of trabecular bone. Further investigation is required to validate this methodology, which could greatly improve identification of patients with skeletal fragility.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516518PMC
http://dx.doi.org/10.1210/clinem/dgad082DOI Listing

Publication Analysis

Top Keywords

trabecular bone
16
bone texture
16
bone mineral
8
mineral density
8
peripheral vbmd
8
vbmd microarchitecture
8
contrast entropy
8
entropy ∼
8
lower asm
8
asm idm
8

Similar Publications

Obesity is a major public health issue worldwide. Despite various approaches to weight loss, the most effective technique for reducing obesity, as well as diabetes and associated diseases, is bariatric surgery. Increasingly, young women without children are undergoing bariatric surgery, vertical sleeve gastrectomy (VSG) being the most common procedure nowadays.

View Article and Find Full Text PDF

Effects of Ab501 (certolizumab mice equivalent) in arthritis induced bone loss.

ARP Rheumatol

January 2024

Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Portugal.

Introduction - Rheumatoid arthritis (RA) is a chronic immune-mediated inflammatory disease, which causes local and systemic bone damage. The main goal of this work was to analyze, how treatment intervention with Ab501 (certolizumab mice equivalent) prevents the disturbances on bone structure and mechanics induced by arthritis. Methods - Thirty DBA/1 collagen-induced arthritis (CIA) mice were randomly housed in experimental groups, as follows: arthritic untreated (N=9), preventive intervention (N=10) and treatment intervention (N=11).

View Article and Find Full Text PDF

Objective: Osteoporosis is a systemic disease with high morbidity and significant adverse effects. Increasing evidence supports the close relationship between oxidative stress and osteoporosis, suggesting that treatment with antioxidants may be a viable approach. This study evaluated the antioxidant properties of dichotomitin (DH) and its potential protective effects against osteoporosis.

View Article and Find Full Text PDF
Article Synopsis
  • The cervical uncinate process, part of the cervical spine, changes with age and may relate to osteoporosis.
  • This study utilized micro-computed tomography (Micro-CT) to analyze the cancellous bone distribution and morphology in the uncinate process from 155 vertebrae (C3-C7).
  • Findings revealed that the cancellous bone is mainly longitudinally aligned, with significant differences in bone surface area between sides, and highlighted C5 as the region most affected by stress and osteoporosis, providing insights for preventing and treating cervical spine-related conditions.
View Article and Find Full Text PDF

This study assessed the feasibility of miR17 ~ 92-based antiresorptive strategy by determining the effects of conditional transgenic (cTG) overexpression of miR17 ~ 92 in myeloid cells on bone and osteoclasts. Osteoclasts of male and female cTG mutant mice each showed 3- to fivefold overexpression of miR17 ~ 92 cluster genes compared to those of age- and sex-matched wildtype (WT) littermates. Male but not female cTG mutant mice had more trabecular and cortical bones as well as lower bone resorption reflected by reduction in osteoclast number and resorbing surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!