Narrow-band emission is essential for applicable circularly polarized luminescence (CPL) active materials in ultrahigh-definition CP-OLEDs. One of the most promising classes of CPL active molecules, helicenes, however, typically exhibit broad emission with a large Stokes shift. We present, herein, a design strategy capitalizing on intramolecular donor-acceptor interactions between nitrogen and boron atoms to address this issue. 1,4-B,N-embedded configurationally stable single- and double helicenes were synthesized straightforwardly. Both helicenes show unprecedentedly narrow fluorescence and CPL bands (full width at half maximum between 17-28 nm, 0.07-0.13 eV) along with high fluorescence quantum yields (72-85 %). Quantum chemical calculations revealed that the relative localization of the natural transition orbitals, mainly on the rigid core of the molecule, and small values of root-mean-square displacements between S and S state geometries, contribute to the narrower emission.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202218965 | DOI Listing |
Sci Rep
January 2025
College of Science, Xuchang University, Xuchang, 461000, China.
Spin and valley polarizations (P and P) and tunneling magnetoresistance (TMR) are demonstrated in the ferromagnetic/barrier/normal/barrier/ferromagnetic WSe junction, with the gate voltage and off-resonant circularly polarized light (CPL) applied to the two barrier regions. The minimum incident energy of non-zero spin- and valley-resolved conductance has been derived, which is consistent with numerical calculations and depends on the electric potential U, CPL intensity ΔΩ, exchange field h, and magnetization configuration: parallel (P) or antiparallel (AP). For the P (AP) configuration, the energy region with P = -1 or P = 1 is wider (narrower) and increases with ΔΩ.
View Article and Find Full Text PDFBiotechnol Adv
January 2025
Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic. Electronic address:
In nature, various molecules possess spiral geometry. Such helical structures are even prevalent within the human body, represented classically by DNA and three-dimensional (secondary structure) protein folding. In this review, we chose helicenes and helicene-like structures -synthetically accessible carbon-rich molecules- as a compelling example of helically chiral scaffolds.
View Article and Find Full Text PDFACS Nano
January 2025
School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China.
Helical structures such as right-handed double helix for DNA and left-handed α-helix for proteins in biological systems are inherently chiral. Importantly, chirality at the nanoscopic level plays a vital role in their macroscopic chiral functionalities. In order to mimic the structures and functions of natural chiral nanoarchitectures, a variety of chiral nanostructures obtained from artificial helical polymers are prepared, which can be directly observed by atomic force microscopy (AFM), scanning tunneling microscopy (STM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM).
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
The magnetic and magneto-optical properties of a tetrazinyl radical-bridged Er metallocene, [(Cp*Er)(bpytz)][BPh] (; Cp* = pentamethylcyclopentadienyl, bpytz = 3,6-bis(3,5-dimethyl-pyrazolyl)-1,2,4,5-tetrazine), are reported. As confirmed by these studies strong Ln-rad coupling is achieved, with exhibiting slow magnetic relaxation under a 1000 Oe dc field. The optical and magneto-optical profile of is completed by both near-infrared (NIR) luminescence and magnetic circularly polarized luminescence (MCPL), representing the first example of NIR MCPL with Er.
View Article and Find Full Text PDFNat Commun
January 2025
Key Laboratory for Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
The preparation of single-crystal polymers with circularly polarized luminesce (CPL) remains a challenging task in chemistry and materials science. Herein, we present the single-crystal-to-single-crystal topochemical photopolymerization of a chiral organic salt to achieve this goal. The in-situ reaction of 1,4-bis((E)-2-(pyridin-4-yl)vinyl)benzene (1) with chiral (+)- or (-)-camphorsulfonic acid (CSA) gives the monomer crystal 1[( + )/( - )-CSA] showing yellow CPL with a high luminescent dissymmetry factor |g| of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!