The prevalence of dementia is currently increasing worldwide. This syndrome produces a deterioration in cognitive function that cannot be reverted. However, an early diagnosis can be crucial for slowing its progress. The Clock Drawing Test (CDT) is a widely used paper-and-pencil test for cognitive assessment in which an individual has to manually draw a clock on a paper. There are a lot of scoring systems for this test and most of them depend on the subjective assessment of the expert. This study proposes a computer-aided diagnosis (CAD) system based on artificial intelligence (AI) methods to analyze the CDT and obtain an automatic diagnosis of cognitive impairment (CI). This system employs a preprocessing pipeline in which the clock is detected, centered and binarized to decrease the computational burden. Then, the resulting image is fed into a Convolutional Neural Network (CNN) to identify the informative patterns within the CDT drawings that are relevant for the assessment of the patient's cognitive status. Performance is evaluated in a real context where patients with CI and controls have been classified by clinical experts in a balanced sample size of [Formula: see text] drawings. The proposed method provides an accuracy of [Formula: see text] in the binary case-control classification task, with an AUC of [Formula: see text]. These results are indeed relevant considering the use of the classic version of the CDT. The large size of the sample suggests that the method proposed has a high reliability to be used in clinical contexts and demonstrates the suitability of CAD systems in the CDT assessment process. Explainable artificial intelligence (XAI) methods are applied to identify the most relevant regions during classification. Finding these patterns is extremely helpful to understand the brain damage caused by CI. A validation method using resubstitution with upper bound correction in a machine learning approach is also discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1142/S0129065723500156 | DOI Listing |
In the context of Chinese clinical texts, this paper aims to propose a deep learning algorithm based on Bidirectional Encoder Representation from Transformers (BERT) to identify privacy information and to verify the feasibility of our method for privacy protection in the Chinese clinical context. We collected and double-annotated 33,017 discharge summaries from 151 medical institutions on a municipal regional health information platform, developed a BERT-based Bidirectional Long Short-Term Memory Model (BiLSTM) and Conditional Random Field (CRF) model, and tested the performance of privacy identification on the dataset. To explore the performance of different substructures of the neural network, we created five additional baseline models and evaluated the impact of different models on performance.
View Article and Find Full Text PDFAesthet Surg J
January 2025
Department of Plastic, Reconstructive and Aesthetic Surgery, Faculty of Medicine, Altınbas University, Istanbul, Turkey.
Background: Artificial intelligence (AI)-driven technologies offer transformative potential in plastic surgery, spanning pre-operative planning, surgical procedures, and post-operative care, with the promise of improved patient outcomes.
Objectives: To compare the web-based ChatGPT-4o (omni; OpenAI, San Francisco, CA) and Gemini Advanced (Alphabet Inc., Mountain View, CA), focusing on their data upload feature and examining outcomes before and after exposure to CME articles, particularly regarding their efficacy relative to human participants.
Nurs Leadersh (Tor Ont)
June 2025
Clinical Practice Leader Corporate Interprofessional Practice Lakeridge Health Durham Region, ON.
The integration of artificial intelligence (AI) into healthcare represents a paradigm shift with the potential to enhance patient care and streamline clinical operations. This commentary explores the Canadian perspective on key organizational considerations for nurse executives, emphasizing the critical role they play in fostering the establishment of AI governance structures and advancing the front-line adoption of AI in nursing practice. The discussion delves into five domains of consideration, analyzing recent developments and implications for nursing executives.
View Article and Find Full Text PDFBr J Hosp Med (Lond)
January 2025
Department of Gastroenterology, Nantong First People's Hospital, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China.
Artificial intelligence (AI), with advantages such as automatic feature extraction and high data processing capacity and being unaffected by fatigue, can accurately analyze images obtained from colonoscopy, assess the quality of bowel preparation, and reduce the subjectivity of the operating physician, which may help to achieve standardization and normalization of colonoscopy. In this study, we aimed to explore the value of using an AI-driven intestinal image recognition model to evaluate intestinal preparation before colonoscopy. In this retrospective analysis, we analyzed the clinical data of 98 patients who underwent colonoscopy in Nantong First People's Hospital from May 2023 to October 2023.
View Article and Find Full Text PDFJ Integr Neurosci
January 2025
Laboratory for the Study of Tactile Communication, Pushkin State Russian Language Institute, 117485 Moscow, Russia.
Background: The significance of tactile stimulation in human social development and personal interaction is well documented; however, the underlying cerebral processes remain under-researched. This study employed functional magnetic resonance imaging (fMRI) to investigate the neural correlates of social touch processing, with a particular focus on the functional connectivity associated with the aftereffects of touch.
Methods: A total of 27 experimental subjects were recruited for the study, all of whom underwent a 5-minute calf and foot massage prior to undergoing resting-state fMRI.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!