A reformulation of the combined density functional theory and multireference configuration interaction method (DFT/MRCI) is presented. Expressions for ab initio matrix elements are used to derive correction terms for a new effective Hamiltonian. On the example of diatomic carbon, the correction terms are derived, focusing on the doubly excited Δ state, which was problematic in previous formulations of the method, as were double excitations in general. The derivation shows that a splitting of the parameters for intra- and interorbital interactions is necessary for a concise description of the underlying physics. Results for L and L states in polyacenes and A and A states in mini-β-carotenoids suggest that the presented formulation is superior to former effective Hamiltonians. Furthermore, statistical analysis reveals that all the benefits of the previous DFT/MRCI Hamiltonians are retained. Consequently, the here presented formulation should be considered as the new standard for DFT/MRCI calculations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.2c07951 | DOI Listing |
Radiol Case Rep
March 2025
Department of Radiology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan.
Differentiating intraparotid facial nerve schwannoma from other parotid tumors, particularly pleomorphic adenoma, is clinically crucial due to significant differences in treatment approaches. We report a case of a male patient in his 70s presenting with a left parotid mass. Magnetic Resonance Imaging (MRI) revealed a mass within the left parotid gland exhibiting the characteristic ``target sign''.
View Article and Find Full Text PDFWater Res
December 2024
Department of Civil, Construction, and Environmental Engineering, San Diego State University, San Diego, CA 92182, USA. Electronic address:
Tire tread particles are microplastics (< 5 mm) and leach organic chemicals into aquatic environments. It is important to understand the behavior of tire wear compounds in sunlight-exposed waters in terms of their persistence, removal, and transformation. Therefore, we conducted photolysis experiments with leachates from laboratory-generated tire tread particles (TTP) over 72 h in a solar simulator to evaluate the behavior of leached compounds and fluorescent components over time.
View Article and Find Full Text PDFAnal Chem
January 2025
The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China.
The position and configuration of the C═C bond have a significant impact on the spatial conformation of unsaturated lipids, which subsequently affects their biological functions. Double bond isomerization of lipids is an important mechanism of bacterial stress response, but its in-depth mechanistic study still lacks effective analytical tools. Here, we developed a visible-light-activated dual-pathway reaction system that enables simultaneous [2 + 2] cycloaddition and catalytic - isomerization of the C═C bond of unsaturated lipids via directly excited anthraquinone radicals.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Department of Chemistry, Seoul National University, Seoul 151-747, South Korea.
ConspectusWhile traditional quantum chemical theories have long been central to research, they encounter limitations when applied to complex situations. Two of the most widely used quantum chemical approaches, Density Functional Theory (DFT) and Time-Dependent Density Functional Theory (TDDFT), perform well in cases with relatively weak electron correlation, such as the ground-state minima of closed-shell systems (Franck-Condon region). However, their applicability diminishes in more demanding scenarios.
View Article and Find Full Text PDFLight Sci Appl
January 2025
Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong SAR, China.
Low-dimensional lead-free metal halide perovskites are highly attractive for cutting-edge optoelectronic applications. Herein, we report a class of scandium-based double perovskite crystals comprising antimony dopants that can generate multiexcitonic emissions in the ultraviolet, blue, and yellow spectral regions. Owing to the zero-dimensional nature of the crystal lattice that minimizes energy crosstalk, different excitonic states in the crystals can be selectively excited by ultraviolet light, X-ray irradiation, and mechanical action, enabling dynamic control of steady/transient-state spectral features by modulating the excitation modes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!