Objective: Proinflammatory cytokines are considered to be one of the key causes of haemophilic cartilage destruction by inducing chondrocyte apoptosis and extracellular matrix degradation. However, few studies have focused on how proinflammatory cytokines regulate the phenotypic changes of chondrocytes, which may be an important factor in haemophilic cartilage degradation pathogenesis. More understanding is needed about the effect of proinflammatory cytokines on phenotypic changes of the chondrocyte. The objective of this study was to examine how IL-6, TNF-α and IL-1β regulate the chondrocyte phenotype, which may be an important factor in haemophilic cartilage degradation pathogenesis.
Methods: HUM-iCell-s018 chondrocytes were treated with increasing concentrations of TNF-α, IL-6 or IL-1β (0, 1, 5, 10 ng/ml) for 24 h, then FGF23 and SOX9 expression was determined by qRT-PCR and WB, respectively.
Results: We found that TNF-α, IL-6 and IL-1β induced FGF23 and suppressed SOX9 expression in chondrocytes in a dose-dependent manner. IL-1β had a stronger regulatory effect on FGF23, while TNF-α and IL-6 had stronger regulatory effects on SOX9.
Conclusions: These findings suggest that IL-6, IL-1β and TNF-α may be involved in haemophilic cartilage destruction pathogenesis by altering the chondrocyte phenotype through modulation of FGF23 and SOX9 gene expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/16078454.2023.2179867 | DOI Listing |
Appl Sci (Basel)
July 2024
Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
Recurrent bleeding in the synovial joint, such as the knee, can give rise to chronic synovitis and degenerative arthritis, which are major causes of morbidity. Whereas chronic arthropathy affects one-fifth of hemophiliacs, conditions such as rheumatoid arthritis (RA), periarticular and articular fractures, osteochondral autograft transplantation surgery, and anterior cruciate ligament (ACL) injury are also associated with joint bleeding. Synovial joint trauma is associated with inflammation, acute pain, bloody joint effusion, and knee instability.
View Article and Find Full Text PDFJ Control Release
January 2025
Department of Orthopedics and Sports Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, PR China; Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health of PR China, Suzhou, Jiangsu, PR China; MOE China-Europe Sports Medicine Belt and Road Joint Laboratory, Soochow University, Suzhou, China. Electronic address:
Hemophilic arthritis (HA) is one of the most pathologically altered joint diseases. Specifically, periodic spontaneous hemorrhage-induced hyperinflammation of the synovium and irreversible destruction of the cartilage are the main mechanisms that profoundly affect the behavioral functioning and quality of life of patients. In this study, we isolated and characterized platelet-rich plasma-derived exosomes (PRP-exo).
View Article and Find Full Text PDFInt J Mol Sci
September 2024
Department of Pathophysiology, University of Medicine and Pharmacy Grigore T. Popa, 700115 Iasi, Romania.
Hemophilia, which is a rare disease, results from congenital deficiencies of coagulation factors VIII and IX, respectively, leading to spontaneous bleeding into joints, resulting in hemophilic arthropathy (HA). HA involves complex processes, including synovial proliferation, angiogenesis, and tissue remodeling. Despite ongoing research, factors contributing to HA progression, especially in adults with severe HA experiencing joint pain, remain unclear.
View Article and Find Full Text PDFHealth Sci Rep
September 2024
Centre for Translational and Clinical Research, Department of Proteomics University of Zagreb, School of Medicine Zagreb Croatia.
Background And Aims: The pathophysiology of haemophilic arthropathy (HA) is complex and largely undefined. Proteomic analyses provide insights into the intricate mechanisms of the HA.Our study aimed to identify differentially expressed proteins in relation to the severity of HA, explore their pathophysiological roles, and evaluate their potential as HA biomarkers.
View Article and Find Full Text PDFBioact Mater
December 2024
Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
Hemophilic articular cartilage damage presents a significant challenge for surgeons, characterized by recurrent intraarticular bleeding, a severe inflammatory microenvironment, and limited self-repair capability of cartilage tissue. Currently, there is a lack of tissue engineering-based integrated therapies that address both early hemostasis, anti-inflammation, and long-lasting chondrogenesis for hemophilic articular cartilage defects. Herein, we developed an adhesive hydrogel using oxidized chondroitin sulfate and gelatin, loaded with exosomes derived from bone marrow stem cells (BMSCs) (Hydrogel-Exos).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!