Physical vapor deposition can be used to prepare highly stable organic glass systems where the molecules show orientational and translational ordering at the nanoscale. We have used low-dose four-dimensional scanning transmission electron microscopy (4D STEM), enabled by a fast direct electron detector, to map columnar order in glassy samples of a discotic mesogen using a 2 nm probe. Both vapor-deposited and liquid-cooled glassy films show domains of similar orientation, but their size varies from tens to hundreds of nanometers, depending on processing. Domain sizes are consistent with surface-diffusion-mediated ordering during film deposition. These results demonstrate the ability of low-dose 4D STEM to characterize a mesoscale structure in a molecular glass system which may be relevant to organic electronics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.3c00197DOI Listing

Publication Analysis

Top Keywords

molecular glass
8
physical vapor
8
vapor deposition
8
stem probe
4
probe mesoscale
4
mesoscale order
4
order molecular
4
glass films
4
films prepared
4
prepared physical
4

Similar Publications

Gene expression dynamics in fibroblasts during early-stage murine pancreatic carcinogenesis.

iScience

January 2025

Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, 06120 Halle (Saale), Germany.

Pancreatic ductal adenocarcinoma (PDAC) is characterized by aggressive growth and metastasis, partly driven by fibroblast-mediated stromal interactions. Using RNA sequencing of fibroblasts from early-stage KPC mouse models, we identified significant upregulation of genes involved in adipogenesis, fatty acid metabolism, and the ROS pathway. ANGPTL4, a key adipogenesis regulator, was highly expressed in fibroblasts and promoted pancreatic cancer cell proliferation and migration through paracrine signaling.

View Article and Find Full Text PDF

Temperature-Dependent Formation of Carbon Nanodomains in Silicon Oxycarbide Glass-A Reactive Force Field MD Study.

J Phys Chem C Nanomater Interfaces

January 2025

Institute of General, Inorganic and Theoretical Chemistry Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria.

Novel anode materials for lithium-ion batteries (LIBs) are constantly being explored to further improve battery performance. In this work, ReaxFF molecular dynamics (MD) simulations are performed to model the early stages in the synthesis of nanostructured silicon carbide (SiC), which is one such promising material. The focus lies on its precursor, silicon oxycarbide glass of composition (SiOC) (17 mol% Si, 28 mol% O, and 54 mol% C), in the following referred to as SiOC.

View Article and Find Full Text PDF

Premelted-Substrate-Promoted Selective Etching Strategy Realizing CVD Growth of High-Quality Graphene on Dielectric Substrates.

ACS Appl Mater Interfaces

January 2025

Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

Direct chemical vapor deposition growth of high-quality graphene on dielectric substrates is a great challenge. Graphene growth on dielectrics always suffers from the issues of a high nucleation density and poor quality. Herein, a premelted-substrate-promoted selective etching (PSE) strategy was proposed.

View Article and Find Full Text PDF

Water Activity as an Indicator for Antibody Storage Stability in Lyophilized Formulations.

Mol Pharm

January 2025

Laboratory of Thermodynamics, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Street 70, Dortmund 44227, Germany.

Lyophilization remains a key method for preserving sensitive biopharmaceuticals such as monoclonal antibodies. Traditionally, stabilization mechanisms have been explained by vitrification, which minimizes molecular mobility in the lyophilized cake, and water replacement, which restores molecular interactions disrupted by water removal. This study proposes a novel design strategy that combines water activity and glass-transition temperature as the main indicators to predict long-term stability in lyophilized formulations.

View Article and Find Full Text PDF

Molecular arrangement in the chiral smectic phases of the glassforming (S)-4'-(1-methylheptylcarbonyl)biphenyl-4-yl 4-[7-(2,2,3,3,4,4,4-heptafluorobutoxy) heptyl-1-oxy]benzoate is investigated by X-ray diffraction. An increased correlation length of the positional short-range order in the supercooled state agrees with the previous assumption of the hexatic smectic phase. However, the registered X-ray diffraction patterns are not typical for the hexatic phases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!