Background: Degeneration of the substantia nigra (SN) may contribute to levodopa-induced dyskinesia (LID) in Parkinson's disease (PD), but the exact characteristics of SN in LID remain unclear.
Objective: To further understand the pathogenesis of patients with PD with LID (PD-LID), we explored the structural and functional characteristics of SN in PD-LID using multimodal magnetic resonance imaging (MRI).
Methods: Twenty-nine patients with PD-LID, 37 patients with PD without LID (PD-nLID), and 28 healthy control subjects underwent T1-weighted MRI, quantitative susceptibility mapping, neuromelanin-sensitive MRI, multishell diffusion MRI, and resting-state functional MRI. Different measures characterizing the SN were obtained using a region of interest-based approach.
Results: Compared with patients with PD-nLID and healthy control subjects, the quantitative susceptibility mapping values of SN pars compacta (SNpc) were significantly higher (P = 0.049 and P = 0.00002), and the neuromelanin contrast-to-noise ratio values in SNpc were significantly lower (P = 0.012 and P = 0.000002) in PD-LID. The intracellular volume fraction of the posterior SN in PD-LID was significantly higher compared with PD-nLID (P = 0.037). Resting-state fMRI indicated that PD-LID in the medication off state showed higher functional connectivity between the SNpc and putamen compared with PD-nLID (P = 0.031), and the functional connectivity changes in PD-LID were positively correlated with Unified Dyskinesia Rating Scale total scores (R = 0.427, P = 0.042).
Conclusions: Our multimodal imaging findings highlight greater neurodegeneration in SN and the altered nigrostriatal connectivity in PD-LID. These characteristics provide a new perspective into the role of SN in the pathophysiological mechanisms underlying PD-LID. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mds.29320 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!