A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Application of magnetic resonance imaging (MRI) technology in the characterization of microstructure and moisture content of young Moso bamboo. | LitMetric

Application of magnetic resonance imaging (MRI) technology in the characterization of microstructure and moisture content of young Moso bamboo.

Ying Yong Sheng Tai Xue Bao

Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China.

Published: January 2023

Bamboo nodes play a key role in the hollow structure and the rapid growth of bamboo culm. Studying on the anatomical structure of bamboo is helpful to understand its growth mechanism. Taking the noninvasive, high-resolution and accurate technical advantages of magnetic resonance imaging (MRI), we conducted cross-sectional high-resolution MRI scanning on the tip of young Moso bamboo culm (removed shoot sheath) and extracted the gray value of the MRIs by using MATLAB software to explore the differences of water distribution in nodes, proximal nodes, and internodes. The results showed that numerous vascular bundles were repeatedly twisted and rotated horizontally at the nodal diaphragms and inner wall near the nodal diaphragms of the young bamboo, forming an intricate and highly connected network. The structure protected important tissues from mechanical stress by allocating axial loads, and enabled to laterally transport water and nutrients, which was an important basis for the rapid growth of Moso bamboo in relatively short term. The signal value (also known as brightness value) of MRIs indicated that water content of vascular bundles in young bamboo culm was much higher than that of surrounding parenchyma tissues. The mean value and standard deviation of water content between pixels of internodes were significantly higher than that of nodes, and the values of that in the proximal nodes were intermediate. The development of MRI would play a significant role in the studies of bamboo anatomy, physiology, and biochemistry.

Download full-text PDF

Source
http://dx.doi.org/10.13287/j.1001-9332.202301.040DOI Listing

Publication Analysis

Top Keywords

moso bamboo
12
bamboo culm
12
bamboo
9
magnetic resonance
8
resonance imaging
8
imaging mri
8
young moso
8
rapid growth
8
proximal nodes
8
vascular bundles
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!