Solar interfacial evaporation has been receiving increasing attention but it is still a huge challenge to achieve excellent coordination between efficient water transport and salt rejection. Here, unlike the common wood-inspired evaporators with equal-diameter directional pores, we have constructed an integrated structure with highly connected gradient pores that mimic the xylem vessels and phloem sieve tubes found in trees. The bio-inspired structure can reduce the resistance of water transport and salt rejection in the same channel. The average transport speed of the 6.5 cm high (2 cm in diameter) porous structure reached 1.504 g s, and water was transported 16 cm after 100 seconds. Using multilayer graphene oxide as the photothermal conversion material, the evaporators with different heights can work for more than 9 hours under the condition of 1 sun illumination and 23 wt% brine without any salt crystallization, and the evaporation rates range from 3.28 to 4.51 kg m h, with the highest energy utilization efficiency of about 80%. When used in heavy metal treatment, the rejection was greater than 99.99%. This research provides a simple but innovative design idea for evaporators and is expected to further expand the application of solar interfacial evaporation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2mh01447e | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Shandong University of Science and Technology, Institute of Carbon Neutrality, College of Chemical and Biological Engineering, No 579 Qianwangang Road, Huangdao District, 266590, Qingdao, CHINA.
Traditionally weak buried interaction without customized chemical bonding always goes against the formation of high-quality perovskite film that highly determines the efficiency and stability of perovskite solar cells. To address this issue, herein, we propose a bimolecular nucleophilic substitution reaction (SN2) driving strategy to idealize the robust buried interface by simultaneously decorating underlying substrate and functionalizing [PbX6]4- octahedral framework with iodoacetamide and thiol molecules, respectively. Theoretical and experimental results demonstrate that a strong SN2 reaction between exposed halogen and thiol group in two molecules occurs, which not only benefits the reinforcement of buried adhesion, but also triggers target-point-oriented crystallization, synergistically upgrading the upper perovskite film quality and accelerating interfacial charge extraction-transfer behavior.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Southern University of Science and Technology, Department of Mechanical and Energy Engineering, 1088 Xueyuan Blvd, Nanshan District, 518055, Shenzhen, CHINA.
The escape of organic cations over time from defective perovskite interface leads to non-stoichiometric terminals, significantly affecting the stability of perovskite solar cells (PSCs). How to stabilize the interface composition under environmental stress remains a grand challenge. To address this issue, we utilize thiol-functionalized particles as a "seed" and conduct in situ polymerization of 2,2,3,4,4,4-hexafluorobutyl methacrylate (HFMA) as a "root" at the bottom of the perovskite layer.
View Article and Find Full Text PDFNanoscale
January 2025
School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, PR China.
Despite the potential to significantly enhance the economic viability of biomass-based platforms through the selective conversion of glycerol to 1,3-dihydroxyacetone (DHA), a formidable challenge persists in simultaneously achieving high catalytic activity and stability along this reaction pathway. Herein, we have devised a strategic approach to manipulate the interfacial integration within composite catalysts to address the performance trade-off. Through the modulation of the composite process involving a bio-templated porous ZSM-5 zeolite platform (bZ) and an Au/CuZnO catalyst, three distinct interfacial bonding modes were achieved: physical milling, encapsulation by zeolite, and growth on zeolite.
View Article and Find Full Text PDFNanoscale
January 2025
College of Chemical Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
Interfacial solar vapor generation (ISVG) accompanied by photocatalytic degradation holds immense potential to mitigate water scarcity and pollution. Distinct from the two detached functional components (photothermal agent and photocatalyst) in a conventional evaporator, in this study, an all-in-one photothermal/catalytic agent, nitrogen-containing honeycomb carbon nanosheets (NHC), was engineered for synergistic high-efficiency steam generation and photocatalysis functions. It was demonstrated that the superoxide radical generated on the surface of NHC conferred its catalytic activity to the photodegradation of organic pollutants under full solar spectrum irradiation.
View Article and Find Full Text PDFSmall Methods
January 2025
Center for Photonics Information and Energy Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China.
Wide-bandgap perovskite solar cells (PVSCs), a promising top-cell candidate for high-performance tandem solar cells, often suffer from larger open-circuit voltage (V) deficits as the bandgap increases. Surface passivation is a common strategy to mitigate these V deficits. However, understanding the mechanisms underlying the differences in passivation effects among various types of molecules remains limited, which is crucial for developing universal interface passivation strategies and guiding the design of passivation molecules.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!