Plant leaf segmentation, especially leaf edge accurate recognition, is the data support for automatically measuring plant phenotypic parameters. However, adjusting the backbone in the current cutting-edge segmentation model for cotton leaf segmentation applications requires various trial and error costs (e.g., expert experience and computing costs). Thus, a simple and effective semantic segmentation architecture (our model) based on the composite backbone was proposed, considering the computational requirements of the mainstream Transformer backbone integrating attention mechanism. The composite backbone was composed of CoAtNet and Xception. CoAtNet integrated the attention mechanism of the Transformers into the convolution operation. The experimental results showed that our model outperformed the benchmark segmentation models PSPNet, DANet, CPNet, and DeepLab v3+ on the cotton leaf dataset, especially on the leaf edge segmentation (MIoU: 0.940, BIoU: 0.608). The composite backbone of our model integrated the convolution of the convolutional neural networks and the attention of the Transformers, which alleviated the computing power requirements of the Transformers under excellent performance. Our model reduces the trial and error cost of adjusting the segmentation model architecture for specific agricultural applications and provides a potential scheme for high-throughput phenotypic feature detection of plants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9927646 | PMC |
http://dx.doi.org/10.3389/fpls.2023.1111175 | DOI Listing |
Alzheimers Dement
December 2024
Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
Background: Postoperative complications of major surgical interventions include delirium. Delirium is a risk factor for dementia, and in some cases, may signal underlying neuropathological processes. Cognitive tests that accurately predict post-operative outcomes could identify patients with cognitive vulnerabilities who may benefit from preoperative counseling and postoperative interventions.
View Article and Find Full Text PDFAdvancements in DNA sequencing technology have facilitated the generation of a vast number of DNA sequences, posing opportunities and challenges for constructing large phylogenetic trees. DNA barcode sequences, particularly COI, represent extensive orthologous sequences suitable for phylogenetic analysis. Phylogenetic placement analysis offers a promising method to integrate COI data into tree-building efforts, yet the impacts of backbone tree completeness and species composition remain under-explored.
View Article and Find Full Text PDFBiomater Res
January 2025
Department of Orthopedics, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310000, China.
Large bone defects are still a persistent challenge in orthopedics. The availability limitations and associated complications of autologous and allogeneic bone have prompted an increasing reliance on tissue engineering and regenerative medicine. In this study, we developed an injectable scaffold combining an acellular extracellular periosteal matrix hydrogel with poly(d,l-lactate--glycol-acetate) microspheres loaded with the E7 peptide and miR217 (miR217/E7@MP-GEL).
View Article and Find Full Text PDFCarbohydr Polym
March 2025
State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China. Electronic address:
Pseudobulbs of Pleione bulbocodioides have been used as traditional Chinese medicine for a long time to treat cancers through decoction with water. However, as its main water-soluble ingredient, the structure of polysaccharide has not been elucidated yet. To obtain its polysaccharide with antitumor activity, a series of isolation, structural identification and antitumor evaluation experiments were performed.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Center of Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, 5009 Bergen, Norway.
Bioprinting of nanohydroxyapatite (nHA)-based bioinks has attracted considerable interest in bone tissue engineering. However, the role and relevance of the physicochemical properties of nHA incorporated in a bioink, particularly in terms of its printability and the biological behavior of bioprinted cells, remain largely unexplored. In this study, two bioinspired nHAs with different chemical compositions, crystallinity, and morphologies were synthesized and characterized: a more crystalline, needle-like Mg-doped nHA (N-HA) and a more amorphous, rounded Mg- and CO-doped nHA (R-HA).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!