A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Protective Effects of Rifampicin and Its Analog Rifampicin Quinone in a Mouse Model of Obesity-Induced Type 2 Diabetes. | LitMetric

Advanced glycation end-products (AGEs) form when glucose reacts non-enzymatically with proteins, leading to abnormal protein function, oxidative stress, and inflammation. AGEs are associated with aging and age-related diseases; their formation is aggravated during diabetes. Therefore, drugs preventing AGE formation can potentially treat diabetic complications, positively affecting health. Earlier, we demonstrated that rifampicin and its analogs have potent anti-glycating activities and increase the life span of . This study aimed to investigate the effects of rifampicin during hyperglycemia in and in a mouse model of obesity-induced type 2 diabetes. The effects of rifampicin were assessed by determining the life span of cultured in the presence of glucose and by measuring HbA1c, AGE levels, and glucose excursions in the diabetic mouse model. Our results show that rifampicin protects from glucose-induced toxicity and increases life span. In mice, rifampicin reduces HbA1c and AGEs, improves insulin sensitivity, and reduces indications of diabetic nephropathy without inducing hepatotoxicity. Rifampicin quinone, an analog with lower anti-microbial activity, also reduces HbA1c levels, improves glucose homeostasis and insulin sensitivity, and lowers indications of diabetic nephropathy, without adversely affecting the liver of the diabetic mice. Altogether, our results indicate that rifampicin and its analog have protective roles during diabetes without inflicting hepatic damage and may potentially be considered for repositioning to treat hyperglycemia-related complications in patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9926524PMC
http://dx.doi.org/10.1021/acsptsci.2c00082DOI Listing

Publication Analysis

Top Keywords

effects rifampicin
12
mouse model
12
life span
12
rifampicin
9
rifampicin analog
8
rifampicin quinone
8
model obesity-induced
8
obesity-induced type
8
type diabetes
8
reduces hba1c
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!