AI Article Synopsis

  • Glucocorticoids like dexamethasone and prednisone are key treatments for B-lymphoblastic leukemia (B-ALL), and their effectiveness is critical for patient outcomes.
  • Enhancing glucocorticoid potency is important but challenging due to systemic toxicities associated with higher doses.
  • Inhibition of the PI3Kδ pathway can boost glucocorticoid effectiveness in B-ALL by improving receptor function, potentially leading to better treatment results for patients, especially those with high-risk disease.

Article Abstract

Glucocorticoids, including dexamethasone and prednisone, are the cornerstone of B-lymphoblastic leukemia (B-ALL) therapy. Because response to glucocorticoids alone predicts overall outcomes for B-ALL, enhancing glucocorticoid potency is a route to improving outcomes. However, systematic toxicities prevent the use of higher dose and more potent glucocorticoids. We therefore took a functional genomic approach to identify targets to enhance glucocorticoid activity specifically in B-ALL cells. Here we show that inhibition of the lymphoid-restricted PI3Kδ, signaling through the RAS/MAPK pathway, enhances both prednisone and dexamethasone activity in almost all B-ALL specimens tested. This potentiation is most synergistic at sub-saturating doses of glucocorticoids, approaching the EC50. Potentiation correlates with global enhancement of glucocorticoid-induced gene regulation, including regulation of effector genes that drive B-ALL cell death. Idelalisib reduces phosphorylation of the glucocorticoid receptor (GR) at MAPK1/ERK2 targets S203 and S226, and ablation of these phospho-acceptor sites enhances glucocorticoid potency. We further show that phosphorylation of S226 reduces the affinity of GR for DNA , which impairs DNA binding. We therefore propose that PI3Kδ inhibition improves glucocorticoid efficacy in B-ALL in part by decreasing GR phosphorylation, increasing DNA binding affinity, and enhancing downstream gene regulation. The overall enhancement of GR function suggests that idelalisib will provide benefit to most patients with B-ALL by improving outcomes for patients whose disease is less responsive to glucocorticoid-based therapy, including high-risk disease, and allowing less toxic glucocorticoid-sparing strategies for patients with standard-risk disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9934697PMC
http://dx.doi.org/10.1101/2023.02.10.527869DOI Listing

Publication Analysis

Top Keywords

gene regulation
12
pi3kδ inhibition
8
b-lymphoblastic leukemia
8
glucocorticoid potency
8
improving outcomes
8
activity b-all
8
dna binding
8
b-all
7
glucocorticoids
5
glucocorticoid
5

Similar Publications

MAPK-CncC Signaling Pathways Regulate the Antitoxic Response to Avermectin-Induced Oxidative Stress in Juvenile Chinese Mitten Crab, .

Environ Sci Technol

January 2025

Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000 Sichuan Province, China.

This study delves into the adverse effects of AVM, emphasizing oxidative stress induction in the Chinese mitten crab, , and the role of the MAPK-CncC signaling pathway in mediating the antioxidative response. Our findings reveal a dose-dependent impairment in growth performance, alongside occurrence of oxidative stress. The activity of CAT and superoxide dismutase increased significantly in all treatments (0.

View Article and Find Full Text PDF

Seed color is a critical quality trait in numerous plant species. In oilseed crops, including rapeseed and mustard, yellow seeds are distinguished by their significantly higher oil content and faster germination rates compared to black or brown counterparts. Despite the agronomic significance of the yellow seeds being a prime breeding target, the mechanisms underlying elevated oil content remain obscure.

View Article and Find Full Text PDF

CBX2 suppresses interferon signaling to diminish tumor immunogenicity via a noncanonical corepressor complex.

Proc Natl Acad Sci U S A

February 2025

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510050, China.

Chromobox 2 (CBX2), a crucial component of the polycomb repressive complex (PRC), has been implicated in the development of various human cancers. However, its role in the regulation of tumor immunogenicity and immune evasion remains inadequately understood. In this study, we found that ablation of CBX2 led to tumor growth inhibition, activation of the tumor immune microenvironment, and enhanced therapeutic efficacy of anti-PD1 or adoptive T cell therapies by using murine syngeneic tumor models.

View Article and Find Full Text PDF

Plastic responses to past environments shape adaptation to novel selection pressures.

Proc Natl Acad Sci U S A

February 2025

Molecular Ecology and Evolution Group, School of Environmental and Natural Sciences, Bangor University, Bangor LL57 2UW, United Kingdom.

Phenotypic plasticity may pave the way for rapid adaptation to newly encountered environments. Although it is often contested, there is growing evidence that initial plastic responses of ancestral populations to new environmental cues may promote subsequent adaptation. However, we do not know whether plasticity to cues present in the ancestral habitat (past-cue plasticity) can facilitate adaptation to novel cues.

View Article and Find Full Text PDF

We lack tools to edit DNA sequences at scales necessary to study 99% of the human genome that is noncoding. To address this gap, we applied CRISPR prime editing to insert recombination handles into repetitive sequences, up to 1697 per cell line, which enables generating large-scale deletions, inversions, translocations, and circular DNA. Recombinase induction produced more than 100 stochastic megabase-sized rearrangements in each cell.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!