Motivation: Precise identification of cancer cells in patient samples is essential for accurate diagnosis and clinical monitoring but has been a significant challenge in machine learning approaches for cancer precision medicine. In most scenarios, training data are only available with disease annotation at the subject or sample level. Traditional approaches separate the classification process into multiple steps that are optimized independently. Recent methods either focus on predicting sample-level diagnosis without identifying individual pathologic cells or are less effective for identifying heterogeneous cancer cell phenotypes.
Results: We developed a generalized end-to-end differentiable model, the Cell Scoring Neural Network (CSNN), which takes the available sample-level training data and predicts both the diagnosis of the testing samples and the identity of the diagnostic cells in the sample, simultaneously. The cell-level density differences between samples are linked to the sample diagnosis, which allows the probabilities of individual cells being diagnostic to be calculated using backpropagation. We applied CSNN to two independent clinical flow cytometry datasets for leukemia diagnosis. In both qualitative and quantitative assessments, CSNN outperformed preexisting neural network modeling approaches for both cancer diagnosis and cell-level classification. Post hoc decision trees and 2D dot plots were generated for interpretation of the identified cancer cells, showing that the identified cell phenotypes match the cancer endotypes observed clinically in patient cohorts. Independent data clustering analysis confirmed the identified cancer cell populations.
Availability: The source code of CSNN and datasets used in the experiments are publicly available on GitHub and FlowRepository.
Contact: Edgar E. Robles: roblesee@uci.edu and Yu Qian: mqian@jcvi.org.
Supplementary Information: Supplementary data are available on GitHub and at online.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9934808 | PMC |
http://dx.doi.org/10.1101/2023.02.07.23285606 | DOI Listing |
Anim Front
December 2024
Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA.
Front Pharmacol
December 2024
Department of Clinical Psychology, The Third Affiliated Hospital of Soochow University, Changzhou, China.
Background: Deutetrabenazine is a widely used drug for the treatment of tardive dyskinesia (TD), and post-marketing testing is important. There is a lack of real-world, large-sample safety studies of deutetrabenazine. In this study, a pharmacovigilance analysis of deutetrabenazine was performed based on the FDA Adverse Event Reporting System (FAERS) database to evaluate its relevant safety signals for clinical reference.
View Article and Find Full Text PDFFront Genet
December 2024
School of information engineering, Jingdezhen Ceramic University, Jingdezhen, China.
The early symptoms of hepatocellular carcinoma patients are often subtle and easily overlooked. By the time patients exhibit noticeable symptoms, the disease has typically progressed to middle or late stages, missing optimal treatment opportunities. Therefore, discovering biomarkers is essential for elucidating their functions for the early diagnosis and prevention.
View Article and Find Full Text PDFCurrent neural network models of primate vision focus on replicating overall levels of behavioral accuracy, often neglecting perceptual decisions' rich, dynamic nature. Here, we introduce a novel computational framework to model the dynamics of human behavioral choices by learning to align the temporal dynamics of a recurrent neural network (RNN) to human reaction times (RTs). We describe an approximation that allows us to constrain the number of time steps an RNN takes to solve a task with human RTs.
View Article and Find Full Text PDFGiant cell arteritis (GCA), a systemic vasculitis affecting large and medium-sized arteries, poses significant diagnostic and management challenges, particularly in preventing irreversible complications like vision loss. Recent advancements in artificial intelligence (AI) technologies, including machine learning (ML) and deep learning (DL), offer promising solutions to enhance diagnostic accuracy and optimize treatment strategies for GCA. This systematic review, conducted according to the PRISMA 2020 guidelines, synthesizes existing literature on AI applications in GCA care, with a focus on diagnostic accuracy, treatment outcomes, and predictive modeling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!