Poor chemical annotation of high-resolution mass spectrometry data limit applications of untargeted metabolomics datasets. Our new software, the Integrated Data Science Laboratory for Metabolomics and Exposomics - Composite Spectra Analysis (IDSL.CSA) R package, generates composite mass spectra libraries from MS1-only data, enabling the chemical annotation of LC/HRMS peaks regardless of the availability of MS2 fragmentation spectra. We demonstrate comparable annotation rates for commonly detected endogenous metabolites in human blood samples using IDSL.CSA libraries versus MS/MS libraries in validation tests. IDSL.CSA can create and search composite spectra libraries from any untargeted metabolomics dataset generated using high-resolution mass spectrometry coupled to liquid or gas chromatography instruments. The cross-applicability of these libraries across independent studies may provide access to new biological insights that may be missed due to the lack of MS2 fragmentation data. The IDSL.CSA package is available in the R CRAN repository at https://cran.r-project.org/package=IDSL.CSA . Detailed documentation and tutorials are provided at https://github.com/idslme/IDSL.CSA .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9934657PMC
http://dx.doi.org/10.1101/2023.02.09.527886DOI Listing

Publication Analysis

Top Keywords

composite spectra
12
chemical annotation
12
untargeted metabolomics
12
spectra analysis
8
metabolomics datasets
8
high-resolution mass
8
mass spectrometry
8
idslcsa package
8
spectra libraries
8
ms2 fragmentation
8

Similar Publications

The light-absorbing chemical components of atmospheric organic aerosols are commonly referred to as Brown Carbon (BrC), reflecting the characteristic yellowish to brown appearance of aerosol. BrC is a highly complex mixture of organic compounds with diverse compositions and variable optical properties of its individual chromophores. BrC significantly influences the radiative budget of the climate and contributes to adverse air pollution effects such as reduced visibility and the presence of inhalable pollutants and irritants.

View Article and Find Full Text PDF

High hydrostatic pressure modulates the digestive properties of rice starch-gallic acid composites by boosting non-inclusion complexation.

Int J Biol Macromol

December 2024

Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England, United Kingdom. Electronic address:

Influencing the starch postprandial glycemia via interventions that are sourced from natural plant materials has gained attention recently. Amylose present in starch is reported to form complexes with small ligands such as gallic acid (GA) through a conformational change that are digested slowly and contribute to the formation of resistant starch. In this study, the molecular interactions, multi-scale structure and in vitro digestion properties of normal neat rice starch and rice starch-GA composites (2, 5 % w/v) obtained either by high hydrostatic pressure (HHP) or thermal (T) treatment were compared.

View Article and Find Full Text PDF

Parmigiano Reggiano protected designation of origin (PDO) cheese inherently exhibits variability due to the characteristics of the production system, contributing to heterogeneity in the composition and properties of milk used in the cheese-making process. This variability leads to variations in cheese yield and nutrient recoveries. The direct measurement of these traits is not feasible in routine practice.

View Article and Find Full Text PDF

The raising economic importance of cannabis arouses interest in positively influencing the secondary plant constituents through external stimuli. One potential possibility to enhance the secondary metabolite profile is the use of UV light. In this study, the influence of spectral UV quality at different intensity levels on photomorphogenesis, growth, inflorescence yield, and secondary metabolite composition was investigated.

View Article and Find Full Text PDF

In this work, Terminalia chebula leaf extract was used to synthesize CuO-CoO nanoparticles, which were then embedded in a rice straw biochar. This new biochar-based nano-catalyst is used to photocatalytically degrade a variety of dyes (Eosin Y, Trypan Blue, Crystal Violet, Methylene Blue, Brilliant Green), as well as a binary mixture of Eosin Y and Trypan Blue dyes. It is also used for the catalytic reduction of nitro compounds (4-NP, 3-NP, and Picric acid).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!