The ability to map trafficking for thousands of endogenous proteins at once in living cells would reveal biology currently invisible to both microscopy and mass spectrometry. Here we report TransitID, a method for unbiased mapping of endogenous proteome trafficking with nanometer spatial resolution in living cells. Two proximity labeling (PL) enzymes, TurboID and APEX, are targeted to source and destination compartments, and PL with each enzyme is performed in tandem via sequential addition of their small-molecule substrates. Mass spectrometry identifies the proteins tagged by both enzymes. Using TransitID, we mapped proteome trafficking between cytosol and mitochondria, cytosol and nucleus, and nucleolus and stress granules, uncovering a role for stress granules in protecting the transcription factor JUN from oxidative stress. TransitID also identifies proteins that signal intercellularly between macrophages and cancer cells. TransitID introduces a powerful approach for distinguishing protein populations based on compartment or cell type of origin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9934598PMC
http://dx.doi.org/10.1101/2023.02.07.527548DOI Listing

Publication Analysis

Top Keywords

proteome trafficking
12
living cells
12
cells transitid
8
mass spectrometry
8
identifies proteins
8
stress granules
8
transitid
5
dynamic mapping
4
mapping proteome
4
trafficking
4

Similar Publications

Subcellular proteomics reveals the crosstalk between nucleocytoplasmic trafficking and the innate immune response to Senecavirus A infection.

Int J Biol Macromol

January 2025

International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Longhu Laboratory, Henan Agricultural University, Zhengzhou University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou 450046, China. Electronic address:

Mounting evidence suggests that a number of host nuclear-resident proteins are indispensable for the replication of picornaviruses, a typical class of cytoplasmic RNA viruses. Host nucleocytoplasmic transport is often hijacked by viruses to promote their replication in the cytoplasm of infected cells, and suppress the innate immune response. However, little is known about the mechanisms by which Senecavirus A (SVA) manipulates nucleocytoplasmic trafficking events to promote infection.

View Article and Find Full Text PDF

In this study, we investigated the impact of bariatric surgery on the adipose proteome to better understand the metabolic and cellular mechanisms underlying weight loss following the procedure. A total of 46 patients with severe obesity were included, with samples collected both before and after bariatric surgery. Additionally, 15 healthy, non-obese individuals who did not undergo surgery served as controls and were studied once.

View Article and Find Full Text PDF

Painful diabetic neuropathy (PDN) is a challenging complication of diabetes with patients experiencing a painful and burning sensation in their extremities. Existing treatments provide limited relief without addressing the underlying mechanisms of the disease. PDN involves the gradual degeneration of nerve fibers in the skin.

View Article and Find Full Text PDF

Placental malaria is characterized by the massive accumulation and sequestration of infected erythrocytes in the placental intervillous blood spaces, causing severe birth outcomes. The variant surface antigen VAR2CSA is associated with Plasmodium falciparum sequestration in the placenta via its capacity to adhere to chondroitin sulfate A. We have previously shown that the extracellular region of VAR2CSA is phosphorylated on several residues and that the phosphorylation enhances the adhesive properties of CSA-binding infected erythrocytes.

View Article and Find Full Text PDF

The proteomic response of to amphotericin B (AmB) reveals the involvement of the RTA-like protein RtaA in AmB resistance.

Microlife

December 2024

Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Adolf-Reichwein-Str. 23, 07745 Jena, Germany.

The polyene antimycotic amphotericin B (AmB) and its liposomal formulation AmBisome belong to the treatment options of invasive aspergillosis caused by . Increasing resistance to AmB in clinical isolates of species is a growing concern, but mechanisms of AmB resistance remain unclear. In this study, we conducted a proteomic analysis of exposed to sublethal concentrations of AmB and AmBisome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!