Background Head louse females secrete liquid gel, which is mainly composed of the louse nit sheath protein 1 (LNSP1) and LNSP2, when they lay eggs. The gel is crosslinked by transglutaminase (TG) to form the nit sheath, which covers most part of egg except the top operculum area where breathing holes are located. Knowledge on the selective mechanism of nit sheath solidification to avoid uncontrolled crosslinking could lead to design a novel way of louse control, but no information is available yet. Methods To elucidate the crosslinking mechanisms of nit sheath gel inside the reproductive system of head louse females, hybridization in conjunction with microscopic observation of the oviposition process was conducted. Results Histochemical analysis revealed that and are expressed over the entire area of accessory gland and uterus, whereas TG expression site is confined to a highly localized area around the opening of posterior oviduct. Detailed microscopic observations of oviposition process uncovered that a mature egg is positioned in the uterus after ovulation. Once aligned inside the uterus, the mature egg is redirected so that its operculum side tightly held by the ventral end of uterus being positioned toward the head again and its pointed bottom end being positioned toward the dorsal end of uterus, which functions as a reservoir for the nit sheath gel. Conclusions Physical separation of the TG-mediated crosslinking site from the ventral end of uterus is necessary to avoid uncontrolled crosslinking inside the uterus and to ensure selective crosslinking over only the lower part of egg without any unwanted crosslinking over the operculum during oviposition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9934775 | PMC |
http://dx.doi.org/10.21203/rs.3.rs-2559266/v1 | DOI Listing |
J Chromatogr A
August 2023
Mechanical Engineering Department, Microfluidics and MEMS lab, Babol Noshirvani University of Technology, Babol, Mazandaran, Iran. Electronic address:
In recent years, microfluidic-based particle/cell manipulation techniques have catalyzed significant advances in several fields of science. As an efficient, precise, and label-free particle/cell manipulation technique, dielectrophoresis (DEP) has recently attracted widespread attention. This paper presents the design and investigation of a straight sheathless 3D microchannel with a wall-mounted trapezoidal obstacle for continuous-flow separation of three different populations of polystyrene (PS) particles (5, 10 and 20 µm) using DEP.
View Article and Find Full Text PDFParasit Vectors
March 2023
Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea.
Background: Head louse females secrete liquid gel, which is mainly composed of the louse nit sheath protein 1 (LNSP1) and LNSP2, when they lay eggs. The gel is crosslinked by transglutaminase (TG) to form the nit sheath, which covers most of the egg except the top operculum area where breathing holes are located. Knowledge on the selective mechanism of nit sheath solidification to avoid uncontrolled crosslinking could lead to designing a novel method of louse control, but no information is available yet.
View Article and Find Full Text PDFBackground Head louse females secrete liquid gel, which is mainly composed of the louse nit sheath protein 1 (LNSP1) and LNSP2, when they lay eggs. The gel is crosslinked by transglutaminase (TG) to form the nit sheath, which covers most part of egg except the top operculum area where breathing holes are located. Knowledge on the selective mechanism of nit sheath solidification to avoid uncontrolled crosslinking could lead to design a novel way of louse control, but no information is available yet.
View Article and Find Full Text PDFAnalyst
November 2022
PhD, Mechanical Engineering Department, Microfluidics and MEMS lab, Babol Noshirvani University of Technology, Babol, Iran.
Biochem Biophys Res Commun
November 2022
School of Systems Biomedical Science and Integrative Institute of Basic Sciences, Soongsil University, Seoul, 06978, Republic of Korea. Electronic address:
The human parasitic head and body lice lay their eggs on either hair or clothing. Attachments of the eggs are possible because the female lice secret a glue substance from the accessory gland along with the egg, which hardens into a nit sheath that secures and protects the egg (The "nit" commonly refers to either the louse egg with an embryo or the empty hatched egg). Proteins called the louse nit sheath protein (LNSP) are suggested to be the major proteins of the nit sheath, but transcriptome profiling of the accessory glands indicated other proteins such as Agp9 and Agp22 are also expressed in the glands.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!