This work aimed to investigate the role and mechanism of Sunitinib (Sun) in suppressing M2 polarization of macrophages in tumor microenvironment (TME). IL-4 was applied to induce the M2 polarization of RAW264.7 cells, followed by treatment with Sun at 50 and 100 nM. Flow cytometry (FCM) was conducted to detect the proportion of F4/80 + CD206 + cells. Enzyme-linked immunosorbent assay (ELISA) was performed to measure the levels of IL-10, Arg-1 and VEGF. Immunofluorescence (IF) staining was carried out to detect the expression of CD206 and Arg-1. Besides, western-Blot (WB) assay was performed to measure the levels of p-JAK1 and p-STAT6 proteins. After polarization, the macrophage culture medium was employed to culture hepatocellular carcinoma (HCC) Hca-F cells. Thereafter, Transwell assays were conducted to examine cell invasion and migration, whereas plate clone formation assay was carried out to detect the clone forming capacity. In further experiments, cells were treated with the STAT6 inhibitor, or STAT6 inhibitor + Sun. Then, the polarization levels of RAW264.7 cells were detected. Moreover, this study established the xenograft tumor mouse model. Later, CD206 and Ki67 expression, IL-10, Arg-1 and VEGF expression levels in tissues, and p-JAK1 and p-STAT6 protein levels were detected by histochemical staining. Sun suppressed the M2 polarization of RAW264.7 cells. Compared with IL-4 treatment, the proportion of F4/80 + CD206 + cells decreased. Meanwhile, the levels of IL-10, Arg-1 and VEGF were downregulated, and the phosphorylation level of JAK1-STAT6 signaling was suppressed. After being cocultured with Hca-F, the malignant behaviors of HCC cells were suppressed after Sun treatment. Similarly, STAT6 inhibitor treatment suppressed the M2 polarization, while the combined application of Sun did not further restrain the polarization level. In the mouse model, Sun suppressed the expression of CD206 and Ki67, simultaneously inhibiting the polarization of JAK1-STAT6 signaling. Sunitinib can suppress the M2 polarization of macrophages to exert the anti-HCC effect, which is its another anticancer mechanism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbt.23333 | DOI Listing |
Front Biosci (Landmark Ed)
December 2024
Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China.
Background: Acute lung injury (ALI) significantly impacts the survival rates in intensive care units (ICU). Releasing a lot of pro-inflammatory mediators during the progression of the disease is a core feature of ALI, which may lead to uncontrolled inflammation and further damages the tissues and organs of patients. This study explores the potential therapeutic mechanisms of Dexmedetomidine (Dex) in ALI.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
December 2024
Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese PLA General Hospital, 100048 Beijing, China.
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a common critical illness. Supportive therapy is still the main strategy for ALI/ARDS. Macrophages are the predominant immune cells in the lungs and play a pivotal role in maintaining homeostasis, regulating metabolism, and facilitating tissue repair.
View Article and Find Full Text PDFJ Inflamm Res
December 2024
Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, People's Republic of China.
Purpose: This study aimed to examine the impact of APS on acute kidney injury induced by rhabdomyolysis (RIAKI), exploring its association with macrophage M1 polarization and elucidating the underlying mechanisms.
Methods: C57BL/6J mice were randomly assigned to one of three groups: a normal control group, a RIAKI model group, and an APS treatment group. Techniques such as flow cytometry and immunofluorescence were employed to demonstrate that APS can inhibit the transition of renal macrophages to the M1 phenotype in RIAKI.
World J Gastroenterol
December 2024
Department of Gastroenterology, University of Balamand, Beirut 3187, Beyrouth, Lebanon.
(. ) is widely used in traditional Chinese medicine due to its anti-tumor effects. .
View Article and Find Full Text PDFCan J Gastroenterol Hepatol
December 2024
Department of Infectious Diseases, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Aims: Carboxylesterase (Ces)1f is implicated in protection against hepatic inflammation, but it is unclear whether the enzyme has an influence in polarization of Kupffer cells (KCs), the innate immune cells mediating hepatic inflammatory injury including acute liver failure (ALF). In the present study, we aim to explore KC polarization induced by Ces1f in mice with lipopolysaccharide/D-galactosamine (LPS/D-GalN)-induced ALF. We adopted a novel delivery system, β-1,3-D-glucan-encapsulated Endoporter-siRNA particles, to specifically target KC Ces1f knockdown via tail vein injection in mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!