The nonequilibrium Fokker-Planck dynamics in an arbitrary force field f[over ⃗](x[over ⃗]) in dimension N is revisited via the correspondence with the non-Hermitian quantum mechanics in a real scalar potential V(x[over ⃗]) and in a purely imaginary vector potential [-iA[over ⃗](x[over ⃗])] of real amplitude A[over ⃗](x[over ⃗]). The relevant parameters of irreversibility are then the N(N-1)/2 magnetic matrix elements B_{nm}(x[over ⃗])=-B_{mn}(x[over ⃗])=∂_{n}A_{m}(x[over ⃗])-∂_{m}A_{n}(x[over ⃗]), while it is enlightening to explore the corresponding gauge transformations of the vector potential A[over ⃗](x[over ⃗]). This quantum interpretation is even more fruitful to study the statistics of all the time-additive observables of the stochastic trajectories, since their generating functions correspond to the same quantum problem with additional scalar and/or vector potentials. Our main conclusion is that the analysis of their large deviations properties and the construction of the corresponding Doob conditioned processes can be drastically simplified via the choice of an appropriate gauge for each purpose. This general framework is then applied to the special time-additive observables of Ornstein-Uhlenbeck trajectories in dimension N, whose generating functions correspond to quantum propagators involving quadratic scalar potentials and linear vector potentials, i.e., to quantum harmonic oscillators in constant magnetic matrices. As simple illustrative example, we finally focus on the Brownian gyrator in dimension N=2 to compute the large deviations properties of the entropy production of its stochastic trajectories and to construct the corresponding conditioned processes having a given value of the entropy production per unit time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.107.014101 | DOI Listing |
Anal Methods
January 2025
College of Chemistry, Sichuan University, Chengdu 610064, China.
Platelet-derived growth factor-BB (PDGF-BB), an important protein biomarker, is closely associated with tumorigenesis. Therefore, it is important to develop a simple and sensitive method to detect PDGF-BB. Herein, we developed a dual recycling signal amplification strategy for colorimetric and sensitive detection of PDGF-BB using a PDGF-BB specific aptamer.
View Article and Find Full Text PDFAnal Chem
January 2025
State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
Timely and accurate detection of trace mycotoxins in agricultural products and food is significant for ensuring food safety and public health. Herein, a deep learning-assisted and entropy-driven catalysis (EDC)-Argonaute powered fluorescence single-particle aptasensing platform was developed for ultrasensitive detection of fumonisin B (FB) using single-stranded DNA modified with biotin and red fluorescence-encoded microspheres as a signal probe and streptavidin-conjugated magnetic beads as separation carriers. The binding of aptamer with FB releases the trigger sequence to mediate EDC cycle to produce numerous 5'-phosphorylated output sequences, which can be used as the guide DNA to activate downstream Argonaute (Ago) for cleaving the signal probe, resulting in increased number of fluorescence microspheres remaining in the final reaction supernatant after magnetic separation.
View Article and Find Full Text PDFAdv Mater
January 2025
State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures and School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China.
Efficient and stable electrocatalytic hydrogen evolution reaction (HER) at high current densities is highly desirable for industrial-scale hydrogen production, which is yet challenging, because of the electrocatalyst with short lifespans during the acidic HER process. Here, a controllable preparation technique is successfully developed to synthesize PdPtRuRhAu high-entropy alloys (HEAs) of various sizes, within the 3.14 nm particles (HEA-3.
View Article and Find Full Text PDFAdv Mater
January 2025
Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Environmental Friendly Materials Technical Service Platform, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.
The lattice-strain engineering of high-entropy-oxide nanoparticles (HEO-NPs) is considered an effective strategy for achieving outstanding performance in various applications. However, lattice-strain engineering independent of the composition variation still confronts significant challenges, with existing modulation techniques difficult to achieve mass production. Herein, a novel continuous-flow synthesis strategy by flame spray pyrolysis (FSP) is proposed, which air varying flow rates is introduced for fast quenching to alter the cooling rate and control the lattice strain of HEO-NPs.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States.
Continuous production of entropy and the corresponding energy dissipation is a defining characteristic of nonequilibrium systems. When a system's full chemical kinetic description is known, its entropy production rate can be computed from the microscopic rate constants. However, such a calculation typically underestimates energy dissipation when the states of the underlying system are mesoscopic, i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!