Background: Bone tissue engineering, as a relatively new approach, has focused on combining biodegradable scaffolds, cells, and biologically active molecules for the recovery of different damaged tissues, such as bone defects. Polyurethane (PU), as a synthetic polymer, benefits from a porous structure which impersonates bone's natural environment. However, PU lacks osteoinduction activities. Cobalt nanoparticles (CoNPs) stimulate angiogenesis and biomineralization, which greatly favors osteogenesis.
Methods: Here, we designed a novel scaffold based on PU and combined it with CoNPs for bone regeneration applications. The composition and structure of PU-CoNPs nanocomposite were characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC). MTT and AO data showed biocompatibility and enhanced viability and proliferation of fibroblasts on PU-CoNPs scaffold. Ascorbic acid-2-phosphate, β-glycerophosphate, and dexamethasone-induced osteogenesis for 14 days.
Results: The alkaline phosphatase test asserts the increased mineralization of hADSCs cultured on PUCoNPs compared to pure PU scaffold. Further, the results disclosed an elevated osteogenic differentiation at the level of genes and proteins using immunocytochemical analysis (ICC) and quantitative real-time PCR (qPCR).
Conclusion: These findings provide an evidence that PU-CoNPs nanocomposite might be a promising candidate for bone repair applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1574888X18666230216085615 | DOI Listing |
Acc Chem Res
January 2025
Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
ConspectusThe Mannich reaction, involving the nucleophilic addition of an enol(ate) intermediate to an imine or iminium ion, is one of the most widely used synthetic methods for the synthesis of β-amino carbonyl compounds. Nevertheless, the homo-Mannich reaction, which utilizes a homoenolate intermediate as the nucleophilic partner and provides straightforward access to the valuable γ-amino carbonyl compounds, remains underexplored. This can be largely attributed to the difficulties in generation and manipulation of the homoenolate species, despite various homoenolate equivalents that have been developed.
View Article and Find Full Text PDFRSC Med Chem
January 2025
School of Chemical Sciences, University of Auckland Auckland 1010 New Zealand
Dysregulation of choline phospholipid metabolism and overexpression of phosphatidylcholine-specific phospholipase C (PC-PLC) is implicated in various cancers. Current known enzyme inhibitors include compounds based on a 2-morpholino-5--benzylamino benzoic acid, or hydroxamic acid, scaffold. In this work, 81 compounds were made by modifying this core structure to explore the pharmacophore.
View Article and Find Full Text PDFChem Sci
January 2025
Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong Wollongong New South Wales 2522 Australia
Although electrostatic catalysis can enhance the kinetics and selectivity of reactions to produce greener synthetic processes, the highly directional nature of electrostatic interactions has limited widespread application. In this study, the influence of oriented electric fields (OEF) on radical addition and atom abstraction reactions are systematically explored with ion-trap mass spectrometry using structurally diverse distonic radical ions that maintain spatially separated charge and radical moieties. When installed on rigid molecular scaffolds, charged functional groups lock the magnitude and orientation of the internal electric field with respect to the radical site, creating an OEF which tunes the reactivity across the set of gas-phase carbon-centred radical reactions.
View Article and Find Full Text PDFRSC Adv
January 2025
Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Girls), Al-Azhar University Cairo 11754 Egypt
The current work focuses on the creation of novel derivatives of the quinazolinone ring system, with various substituted thiophene, thienopyrimidine, and thienopyridine scaffolds 3a,b-11. Employing the standard MTT assay, every target compound's antiproliferative efficacy was evaluated in comparison with doxorubicin against both normal WI-38 cells and various cancer cell lines. Derivatives 6, 8a, and 8b demonstrated the most potent activity, alongside their safety profiles against WI-38.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Basel, Department of Chemistry, St. Johanns-Ring 19, 4056, Basel, SWITZERLAND.
Despite the growing importance of planar chiral macrocyclophanes owing to their unique properties in different areas of chemistry, methods that are effective in controlling their planar chirality are restricted to certain molecular scaffolds. Herein, we report the first Pd(0)-catalyzed enantioselective intermolecular C-H arylation that induces planar chirality by installing bulky aryl groups through dynamic kinetic resolution (DKR). A computer-assisted approach allowed a fine-tuning of the structure of the employed chiral bifunctional phosphine-carboxylate ligands to achieve high enantioselectivities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!