Telomere-to-telomere assembly of diploid chromosomes with Verkko.

Nat Biotechnol

Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.

Published: October 2023

The Telomere-to-Telomere consortium recently assembled the first truly complete sequence of a human genome. To resolve the most complex repeats, this project relied on manual integration of ultra-long Oxford Nanopore sequencing reads with a high-resolution assembly graph built from long, accurate PacBio high-fidelity reads. We have improved and automated this strategy in Verkko, an iterative, graph-based pipeline for assembling complete, diploid genomes. Verkko begins with a multiplex de Bruijn graph built from long, accurate reads and progressively simplifies this graph by integrating ultra-long reads and haplotype-specific markers. The result is a phased, diploid assembly of both haplotypes, with many chromosomes automatically assembled from telomere to telomere. Running Verkko on the HG002 human genome resulted in 20 of 46 diploid chromosomes assembled without gaps at 99.9997% accuracy. The complete assembly of diploid genomes is a critical step towards the construction of comprehensive pangenome databases and chromosome-scale comparative genomics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10427740PMC
http://dx.doi.org/10.1038/s41587-023-01662-6DOI Listing

Publication Analysis

Top Keywords

assembly diploid
8
diploid chromosomes
8
human genome
8
graph built
8
built long
8
long accurate
8
diploid genomes
8
diploid
5
telomere-to-telomere assembly
4
verkko
4

Similar Publications

With advances in long-read sequencing and assembly techniques, haplotype-resolved (phased) genome assemblies are becoming more common, also in the field of plant genomics. Computational tools to effectively explore these phased genomes, particularly for polyploid genomes, are currently limited. Here we describe a new strategy adopting a pangenome approach.

View Article and Find Full Text PDF

Chromosome-scale assembly and annotation of the wild wheat relative Aegilops comosa.

Sci Data

December 2024

State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China.

Wild relatives of wheat are valuable sources for enhancing the genetic diversity of common wheat. Aegilops comosa, an annual diploid species with an MM genome constitution, possesses numerous agronomically valuable traits that can be exploited for wheat improvement. In this study, we report a chromosome-level genome assembly of Ae.

View Article and Find Full Text PDF

The green alga (formerly ) is a primary source of astaxanthin, a ketocarotenoid with high antioxidant activity and several industrial applications. Here, the highly repetitive genome was reconstructed by exploiting next-generation sequencing integrated with Hi-C scaffolding, obtaining a 151 Mb genome assembly in 32 scaffolds at a near-chromosome level with high continuity. Surprisingly, the distribution of the single-nucleotide-polymorphisms identified demonstrates a diploid configuration for the genome, further validated by Sanger sequencing of heterozygous regions.

View Article and Find Full Text PDF

Potato () is the third most important food crop in the world. Although the potato genome has been fully sequenced, functional genomics research of potato lags relative to other major food crops due primarily to the lack of a model experimental potato line. Here, we present a diploid potato line, 'Jan', which possesses all essential characteristics for facile functional genomics studies.

View Article and Find Full Text PDF

Genomic characteristics and genetic manipulation of the marine yeast Scheffersomyces spartinae.

Appl Microbiol Biotechnol

December 2024

National Key Laboratory of Biobased Transportation Fuel Technology, Ocean College, Zhejiang University, Hangzhou, 310027, China.

The halotolerant yeast Scheffersomyces spartinae, commonly found in marine environments, holds significant potential for various industrial applications. Despite this, its genetic characteristics have been relatively underexplored. In this study, we isolated a strain of S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!