Aims: This study aimed to establish the mechanisms of action (MOA) of a novel surface-functionalized polyacrylonitrile (PAN) catalyst, which was previously shown to have potent antimicrobial activity in conjunction with hydrogen peroxide (H2O2).

Methods And Results: Bactericidal activity was determined using a disinfectant suspension test. The MOA was investigated by measuring the loss of 260 nm absorbing material, membrane potential, permeability assays, analysis of intra- and extracellular ATP and pH, and tolerance to sodium chloride and bile salts.The catalyst lowered sub-lethal concentrations of H2O2 from 0.2 to 0.09%. H2O2 ± 3 g PAN catalyst significantly (P ≤ 0.05) reduced sodium chloride and bile salt tolerance, suggesting the occurance of sublethal cell membrane damage. The catalyst significantly increased (P ≤ 0.05) N-Phenyl-l-Napthylamine uptake (1.51-fold) and leakage of nucleic acids, demonstrating increased membrane permeability. A significant (P ≤ 0.05) loss of membrane potential (0.015 a.u.), coupled with pertubation of intracellular pH homeostasis and depletion of intracellular ATP, suggests potentiation of H2O2-mediated cell membrane damage.

Conclusions: This is the first study to investigate the catalyst's antimicrobial mechanism of action, with the cytoplasmic membrane being a target for cellular injury.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jambio/lxad017DOI Listing

Publication Analysis

Top Keywords

hydrogen peroxide
8
mechanisms action
8
pan catalyst
8
membrane potential
8
sodium chloride
8
chloride bile
8
cell membrane
8
membrane
6
catalyst
5
heterogeneous fenton's-like
4

Similar Publications

Introduction: Loss of skin integrity due to a wound or disease can lead to severe disability or even life threat. The highly expressed microRNAs in the skin are of great significance for skin development. The investigation purposed to explore the effect and mechanism of miR-211 on inflammation, oxidative stress and migration in keratinocytes.

View Article and Find Full Text PDF

Modulation of stomatal development and movement is a promising approach for creating water-conserving plants. Here, we identified and characterized the PagHCF106 gene of poplar (Populus alba × Populus glandulosa). The PagHCF106 protein localized predominantly to the chloroplast, and the PagHCF106 gene exhibited tissue-specific expression pattern.

View Article and Find Full Text PDF

Oxidative stress is a major threat to plant growth and survival. To understand how plants cope with oxidative stress, we carried out a genetic screen for Arabidopsis (Arabidopsis thaliana) mutants with altered response to hydrogen peroxide (H2O2) in root growth. Herein, we report the characterization of one of the hypersensitive mutants obtained.

View Article and Find Full Text PDF

Covalent organic frameworks (COFs) are often employed in oxygen reduction reactions (ORR) for hydrogen peroxide production due to their tunable structures and compositions. However, COF electrocatalysts require precise structural engineering, such as heteroatoms or metal site doping, to modulate the reaction pathway during the ORR process. In this work, we designed a tetraphenyl-p-phenylenediamine based COF electrocatalyst, namely TPDA-BDA, which exhibited excellent two-electron (2e) ORR performance with high H2O2 selectivity of 89.

View Article and Find Full Text PDF

Oxidative stress is a prominent feature of Alzheimer's disease. Within this context, cholesterol undergoes oxidation, producing the pro-inflammatory product 7-ketocholesterol (7-KC). In this study, we observe elevated levels of 7-KC in the brains of the 3xTg mouse model of AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!