Distinct brain networks for remote episodic memory depending on content and emotional experience.

Prog Neurobiol

UMR 5292 CNRS, INSERM U1028, University Lyon1, Olfaction: From coding to Memory Team, Lyon Neuroscience Research Center, F-69366 Lyon, France. Electronic address:

Published: April 2023

AI Article Synopsis

  • Memories of life episodes are crucial to individual stories, but understanding how episodic memory is formed and stored is challenging in both humans and animals.
  • A study using a new task in rodents demonstrates that rats can create and remember integrated remote episodic memories, showing variations in memory content and accuracy based on their emotional ties to specific odors.
  • Advanced brain imaging revealed that activated brain networks involved in recollecting these memories reflect their nature and content, highlighting the importance of both a cortico-hippocampal network for complete recollection and an emotional network related to odors for maintaining vivid memories.

Article Abstract

Memories of life episodes are the heart of individual stories. However, modelling episodic memory is a major challenge in both humans and animals when considering all its characteristics. As a consequence, the mechanisms that underlie the storage of old nontraumatic episodic memories remain enigmatic. Here, using a new task in rodents that models human episodic memory including odour/place/context components and applying advances behavioural and computational analyses, we show that rats form and recollect integrated remote episodic memories of two occasionally encountered complex episodes occurring in their daily life. Similar to humans, the information content and accuracy of memories vary across individuals and depend on the emotional relationship with odours experienced during the very first episode. We used cellular brain imaging and functional connectivity analyses, to find out the engrams of remote episodic memories for the first time. Activated brain networks completely reflect the nature and content of episodic memories, with a larger cortico-hippocampal network when the recollection is complete and with an emotional brain network related to odours that is critical in maintaining accurate and vivid memories. The engrams of remote episodic memories remain highly dynamic since synaptic plasticity processes occur during recall related to memory updates and reinforcement.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pneurobio.2023.102422DOI Listing

Publication Analysis

Top Keywords

episodic memories
20
remote episodic
16
episodic memory
12
brain networks
8
episodic
8
memories
8
memories remain
8
engrams remote
8
distinct brain
4
remote
4

Similar Publications

CSF concentrations of β-amyloid 42 (Aβ42) and phosphorylated tau (p-tau) are well-established biomarkers of Alzheimer's disease and have been studied in relation to several neuropathological features both in patients and in cognitively unimpaired individuals. The CSF p-tau/Aβ42 ratio, a biomarker combining information from both pathophysiological processes, has emerged as a promising tool for monitoring disease progression, even at pre-clinical stages. Here, we studied the association between the CSF p-tau/Aβ42 ratio with downstream markers of pre-clinical Alzheimer's disease progression including brain structure, glucose metabolism, fibrillary Aβ deposition and cognitive performance in 234 cognitively unimpaired individuals, who underwent cognitive testing, a lumbar puncture, MRI, 18F-fluorodeoxyglucose and 18F-flutemetamol PET scanning.

View Article and Find Full Text PDF

In keeping with the historical focus of this special issue of Hippocampus, this paper reviews the history of my development of the SPEAR model. The SPEAR model proposes that separate phases of encoding and retrieval (SPEAR) allow effective storage of multiple overlapping associative memories in the hippocampal formation and other cortical structures. The separate phases for encoding and retrieval are proposed to occur within different phases of theta rhythm with a cycle time on the order of 125 ms.

View Article and Find Full Text PDF

The Anatomy of Context.

Hippocampus

January 2025

Department of Cognitive and Psychological Sciences, Brown University, Providence, Rhode Island, USA.

For most of my career, I focused on understanding how and where spatial context, the place where things happen, is represented in the brain. My interest in this began in the early 1990's, during my postdoctoral training with David Amaral, when we defined the rodent homolog of the primate parahippocampal cortex, a region implicated in processing spatial and contextual information. We parceled out the caudal portion of the rat perirhinal cortex (PER) and called it the postrhinal cortex (POR).

View Article and Find Full Text PDF

Age-related atrophy of the human hippocampus and the enthorinal cortex starts accelerating at around age 60. Due to the contributions of these regions to many cognitive functions seamlessly used in everyday life, this can heavily impact the lives of elderly people. The hippocampus is not a unitary structure, and mechanisms of its age-related decline appear to differentially affect its subfields.

View Article and Find Full Text PDF

As requested by the editors of this special issue of Hippocampus on Scientific Histories of Hippocampal Research, this review provides a detailed personal perspective and historical background on the research involved in a number of findings. The review includes description of the development of the water maze and its use in providing evidence to support the role of the hippocampus in spatial memory function. The review also describes how the water maze was then used in further work to support the proposal that NMDA-dependent synaptic modification in the hippocampus mediates the encoding of new spatial memories.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!